DATA MINING FOR THE ASSESSMENT OF MANAGEMENT AREAS IN PRECISION AGRICULTURE

Precision Agriculture (PA) uses technologies with the aim of increasing productivity and reducing the environmental impact by means of site-specific application of agricultural inputs. In order to make it economically feasible, it is essential to improve the current methodologies as well as proposing new ones, in which data regarding productivity, soil, and compound indicators are used to determine Management Areas (MAs). These units are heterogeneous areas within the same region. With these methodologies, data mining (DM) techniques and algorithms may be used. In order to integrate DM techniques to PA, the aim of this study was to associate MAs created for soy productivity using the Fuzzy C-means algorithm by SDUM software over a 9.9-ha plot as the reference method. It was in opposition to the grouping of 2, 3, and 4 clusters obtained by the K-means classification algorithms, with and without the Principal Component Analysis (PCA), and the EM algorithm using chemical and physical data of the soil samples collected in the same area during the same period. The EM algorithm with PCA modeling had a superior performance than K-means based on hit rates. It is noteworthy that the greater the number of analyzed MAs, the lower the percentage of hits, in agreement with the result shown by SDUM, which shows that two MAs compose the best configuration for this studied area.

[1]  S. R. M. Oliveira,et al.  Técnicas de mineração de dados para identificação de áreas espectralmente homogêneas, utilizando perfis temporais de NDVI da cultura da soja no estado do Paraná , 2013 .

[2]  L. Rodrigues,et al.  DATA MINING TECHNIQUES FOR IDENTIFICATION OF SPECTRALLY HOMOGENEOUS AREAS USING NDVI TEMPORAL PROFILES OF SOYBEAN CROP , 2013 .

[3]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[4]  Miguel Angel Uribe-Opazo,et al.  Management zones definition using soil chemical and physical attributes in a soybean area , 2013 .

[5]  Ian T. Jolliffe,et al.  Discarding Variables in a Principal Component Analysis. I: Artificial Data , 1972 .

[6]  Alex B. McBratney,et al.  Soil pattern recognition with fuzzy-c-means : application to classification and soil-landform interrelationships , 1992 .

[7]  Brigitte Charnomordic,et al.  A segmentation algorithm for the delineation of agricultural management zones , 2010 .

[8]  M. S. Rodrigues,et al.  Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield , 2015 .

[9]  I. Jolliffe Discarding Variables in a Principal Component Analysis. Ii: Real Data , 1973 .

[10]  José Paulo Molin,et al.  Spatial and temporal variability of soil electrical conductivity related to soil moisture , 2013 .

[11]  Miguel Angel Uribe-Opazo,et al.  Unidades de manejo a partir de mapas de produtividade normalizada e padronizada equivalente , 2011 .

[12]  Letícia Gorri Molina,et al.  A Constituição da Memória dos Procedimentos em Saúde no Contexto do Prontuário Eletrônico do Paciente. , 2014 .

[13]  Deborah Ribeiro Carvalho,et al.  PÓS-PROCESSAMENTO EM KDD , 2013 .

[14]  Deborah Ribeiro Carvalho,et al.  Mineração de dados: aplicações, ferramentas, tipos de aprendizado e outros subtemas , 2014 .

[15]  René de Assis Sordi,et al.  Utilization of trash: a view from the agronomic and industrial perspective , 2013 .

[16]  M. Uribe-Opazo,et al.  DETERMINATION OF MANAGEMENT ZONES FROM NORMALIZED AND STANDARDIZED EQUIVALENT PRODUTIVITY MAPS IN THE SOYBEAN CULTURE 1 , 2011 .