Classi cation of Color Edges in Video intoShadow-Geometry , Highlight , or Material

We aim at using color information to classify the physical nature of a color edge. To achieve physics-based edge classiication, we propose a taxonomy of color invariant edges. Further, we present a framework for automatic color edge detection and noise-adaptive thresholding derived from sensor noise analysis and propagation. Then, a parameter-free color edge classiier is introduced labeling color transitions into the following edge types: (1) shadow, geometry or shading edges, (2) highlight edges, (3) material edges. The proposed method is empirically veriied for video showing complex real world scenes.

[1]  J. Taylor An Introduction to Error Analysis , 1982 .

[2]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[3]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Hsien-Che Lee,et al.  Modeling Light Reflection for Computer Color Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Glenn Healey,et al.  Segmenting images using normalized color , 1992, IEEE Trans. Syst. Man Cybern..

[6]  Ian T. Young,et al.  Methods for CCD camera characterization , 1994, Electronic Imaging.

[7]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[8]  Peter Wai-Ming Tsang,et al.  Suppression of false edge detection due to specular reflection in color images , 1997, Pattern Recognit. Lett..

[9]  Arnold W. M. Smeulders,et al.  Color Invariant Snakes , 1998, BMVC.

[10]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[11]  Gudrun Klinker,et al.  A physical approach to color image understanding , 1989, International Journal of Computer Vision.

[12]  Wei Zhang,et al.  Multi-Scale Blur Estimation and Edge Type Classification for Scene Analysis , 1997, International Journal of Computer Vision.