Nonlinear model predictive control based on support vector machine and genetic algorithm

Abstract This paper presents a nonlinear model predictive control (NMPC) approach based on support vector machine (SVM) and genetic algorithm (GA) for multiple-input multiple-output (MIMO) nonlinear systems. Individual SVM is used to approximate each output of the controlled plant. Then the model is used in MPC control scheme to predict the outputs of the controlled plant. The optimal control sequence is calculated using GA with elite preserve strategy. Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.

[1]  Johan A. K. Suykens,et al.  Support Vector Machines: A Nonlinear Modelling and Control Perspective , 2001, Eur. J. Control.

[2]  Ronald Soeterboek,et al.  Predictive Control: A Unified Approach , 1992 .

[3]  Ronald K. Pearson,et al.  Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models , 1996, Autom..

[4]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[5]  Michael A. Henson,et al.  Nonlinear model predictive control: current status and future directions , 1998 .

[6]  Marko Bacic,et al.  Model predictive control , 2003 .

[7]  Serdar Iplikci,et al.  A support vector machine based control application to the experimental three-tank system. , 2010, ISA transactions.

[8]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[9]  Yi Cao,et al.  Nonlinear model predictive control for the ALSTOM gasifier , 2006 .

[10]  O. Agamennoni,et al.  A nonlinear model predictive control system based on Wiener piecewise linear models , 2003 .

[11]  Sun Changyin LS-SVM predictive control based on PSO for nonlinear systems , 2010 .

[12]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[13]  Peng Chen,et al.  Nonlinear model predictive control with the integration of Support Vector Machine and Extremal optimization , 2010, 2010 8th World Congress on Intelligent Control and Automation.

[14]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[15]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[16]  Zhiyun Zou,et al.  Nonlinear Model Algorithmic Control of a pH Neutralization Process , 2013 .

[17]  R. De Keyser,et al.  Extended Prediction Self-Adaptive Control , 1985 .

[18]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[19]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[20]  J. Richalet,et al.  Industrial applications of model based predictive control , 1993, Autom..

[21]  Xi Zhang,et al.  Multi-model Predictive Control of Ultra-supercritical Coal-fired Power Unit , 2014 .