Nested retrotransposons on the W chromosome of the wild silkworm Bombyx mandarina

The W chromosome of the silkworms Bombyx mori or B. mandarina is recombinationally isolated from the Z chromosome and the autosomes. We previously characterized a female‐specific randomly amplified polymorphic DNA (RAPD), designated W‐Yamato, derived from the W chromosome of the wild silkworm Bombyx mandarina. To further analyse the W chromosome of B. mandarina, we obtained a lambda phage clone that contains the W‐Yamato RAPD sequence and sequenced the 16.7 kb DNA insert. We found that this DNA comprises a nested structure of at least seven elements: six retrotransposons and one transposable element‐like sequence. The transposable element‐like sequence is inserted into a micropia‐like retrotransposon (Karate). The Karate and the non‐long terminal repeat (non‐LTR) retrotransposon BMC1 are inserted into a 412‐like retrotransposon (Judo). Furthermore, this Judo, and two non‐LTR retrotransposons (Kurosawa and Kendo) are inserted into a Pao‐like retrotransposon (Yamato). These results indicate that the retrotransposons inserted into the W chromosome are not efficiently removed but accumulate gradually as strata without recombination.

[1]  G. C. Rodakis,et al.  Sequence analysis of a small early chorion gene subfamily interspersed within the late gene locus in Bombyx mori , 1995, Journal of Molecular Evolution.

[2]  T. Ogura,et al.  A defective non-LTR retrotransposon is dispersed throughout the genome of the silkworm, Bombyx mori , 1994, Chromosoma.

[3]  R. Michelmore,et al.  Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce , 1993, Theoretical and Applied Genetics.

[4]  G. C. Rodakis,et al.  The possible evolutionary significance of repeat elements near and within an early chorion gene in the late chorion locus of Bombyx mori , 1992, Journal of Molecular Evolution.

[5]  Yoshiaki Suzuki,et al.  The sequence around the 5′ end of the fibroin gene from the wild silkworm, Bombyx mandarina, and comparison with that of the domesticated species, B. mori , 1986, Molecular and General Genetics MGG.

[6]  E. Rasch The DNA content of sperm and hemocyte nuclei of the silkworm, Bombyx mori L. , 1974, Chromosoma.

[7]  K. O'hare,et al.  DNA sequence of the Doe retroposon in the white-one mutant of Drosophila melanogaster and of secondary insertions in the phenotypically altered derivatives white honey and white-eosin , 2004, Molecular and General Genetics MGG.

[8]  H. Abe,et al.  Two novel Pao-like retrotransposons (Kamikaze and Yamato) from the silkworm species Bombyx mori and B. mandarina: common structural features of Pao-like elements , 2001, Molecular Genetics and Genomics.

[9]  B. Charlesworth,et al.  Genome analysis: More Drosophila Y chromosome genes , 2001, Current Biology.

[10]  D. Petrov,et al.  Genomic gigantism: DNA loss is slow in mountain grasshoppers. , 2001, Molecular biology and evolution.

[11]  P. Schulze-Lefert,et al.  A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. , 2000, Genome research.

[12]  H. Abe,et al.  Molecular structure of a novel gypsy-Ty3-like retrotransposon (Kabuki) and nested retrotransposable elements on the W chromosome of the silkworm Bombyx mori , 2000, Molecular and General Genetics MGG.

[13]  D. Petrov,et al.  Evidence for DNA loss as a determinant of genome size. , 2000, Science.

[14]  Y. Kawaguchi,et al.  Geographic dimorphism of the wild silkworm, Bombyx mandarina, in the chromosome number and the occurrence of a retroposon-like insertion in the arylphorin gene. , 1999, Genome.

[15]  T. Eickbush,et al.  Modular Evolution of the Integrase Domain in the Ty3/Gypsy Class of LTR Retrotransposons , 1999, Journal of Virology.

[16]  A. James,et al.  Identification of a non‐LTR retrotransposon from the gypsy moth , 1999, Insect molecular biology.

[17]  R. Poulter,et al.  A LINE element from the pufferfish (fugu) Fugu rubripes which shows similarity to the CR1 family of non-LTR retrotransposons. , 1999, Gene.

[18]  E. Ohtsubo,et al.  Identification and characterization of novel retrotransposons of the gypsy type in rice , 1999, Molecular and General Genetics MGG.

[19]  H. Abe,et al.  A complete full-length non-LTR retrotransposon, BMC1, on the W chromosome of the silkworm, Bombyx mori. , 1998, Genes & genetic systems.

[20]  H. Abe,et al.  Molecular structure of the copia-like retrotransposable element Yokozuna on the W chromosome of the silkworm, Bombyx mori. , 1998, Genes & genetic systems.

[21]  Y. Yasukochi,et al.  A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. , 1998, Genetics.

[22]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[23]  H. Abe,et al.  Identification of novel random amplified polymorphic DNAs (RAPDs) on the W chromosome of the domesticated silkworm, Bombyx mori, and the wild silkworm, B. mandarina, and their retrotransposable element-related nucleotide sequences. , 1998, Genes & genetic systems.

[24]  M. Steinemann,et al.  The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome of Drosophila miranda. , 1997, Genetics.

[25]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[26]  H. Abe,et al.  Nucleotide Sequence of the Random Amplified Polymorphic DNA (RAPD) on the W Chromosome of the Silkworm, Bombyx mori (Lepidoptera: Bombycidae). , 1996 .

[27]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[28]  H. Abe,et al.  A common random amplified polymorphic DNA in the silkworm, Bombyx mori is shared by W chromosomes onto which the normal marking, Sable and Black genes are translocated respectively , 1996 .

[29]  B. Charlesworth,et al.  The evolution of chromosomal sex determination and dosage compensation , 1996, Current Biology.

[30]  D. Heckel,et al.  A genetic linkage map for the domesticated silkworm, Bombyx mori , based on restriction fragment length polymorphisms , 1995 .

[31]  T. Shimada,et al.  Linkage map of random amplified polymorphic DNAs (RAPDs) in the silkworm, Bombyx mori , 1995 .

[32]  H. Abe,et al.  Identification of random amplified polymorphic DNA on the W chromosome of the Chinese 137 strain of the silkworm, Bombyx mori , 1995 .

[33]  M. Goldsmith Molecular Model Systems in the Lepidoptera: Genetics of the silkworm: revisiting an ancient model system , 1995 .

[34]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[35]  J. Burch,et al.  Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[36]  F. Lottspeich,et al.  How Y chromosomes become genetically inert. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Steinemann,et al.  Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Skalka,et al.  Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases , 1992, Molecular and cellular biology.

[39]  B. Charlesworth,et al.  The evolution of sex chromosomes. , 1991, Science.

[40]  Avedisov Sn,et al.  [Features of the structural organization of the MDG1 retrotransposon of Drosophila, revealed during its sequencing]. , 1990 .

[41]  T. Eickbush,et al.  Origin and evolution of retroelements based upon their reverse transcriptase sequences. , 1990, The EMBO journal.

[42]  P. Huijser,et al.  Micropia: a retrotransposon of Drosophila combining structural features of DNA viruses, retroviruses and non-viral transposable elements. , 1988, Journal of molecular biology.

[43]  T. Eickbush,et al.  Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. , 1988, Molecular biology and evolution.

[44]  Y. Ilyin,et al.  The Drosophila mobile element jockey belongs to LINEs and contains coding sequences homologous to some retroviral proteins. , 1988, Gene.

[45]  M. A. McClure,et al.  Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[46]  K. Saigo,et al.  Nucleotide sequence characterization of a Drosophila retrotransposon, 412. , 1986, European journal of biochemistry.

[47]  D. Hogness,et al.  Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. , 1983, Journal of molecular biology.

[48]  L. Gage Polyploidization of the silk gland of Bombyx mori. , 1974, Journal of molecular biology.

[49]  Yoshimaro Tanaka,et al.  GENETIC STUDIES ON THE SILKWORM , 1916 .