Kinetic inductance detectors for the OLIMPO experiment: design and pre-flight characterization

We designed, fabricated, and characterized four arrays of horn--coupled, lumped element kinetic inductance detectors (LEKIDs), optimized to work in the spectral bands of the balloon-borne OLIMPO experiment. OLIMPO is a 2.6 m aperture telescope, aimed at spectroscopic measurements of the Sunyaev-Zel'dovich (SZ) effect. OLIMPO will also validate the LEKID technology in a representative space environment. The corrected focal plane is filled with diffraction limited horn-coupled KID arrays, with 19, 37, 23, 41 active pixels respectively at 150, 250, 350, and 460$\:$GHz. Here we report on the full electrical and optical characterization performed on these detector arrays before the flight. In a dark laboratory cryostat, we measured the resonator electrical parameters, such as the quality factors and the electrical responsivities, at a base temperature of 300$\:$mK. The measured average resonator $Q$s are 1.7$\times{10^4}$, 7.0$\times{10^4}$, 1.0$\times{10^4}$, and 1.0$\times{10^4}$ for the 150, 250, 350, and 460$\:$GHz arrays, respectively. The average electrical phase responsivities on resonance are 1.4$\:$rad/pW, 1.5$\:$rad/pW, 2.1$\:$rad/pW, and 2.1$\:$rad/pW; the electrical noise equivalent powers are 45$\:\rm{aW/\sqrt{Hz}}$, 160$\:\rm{aW/\sqrt{Hz}}$, 80$\:\rm{aW/\sqrt{Hz}}$, and 140$\:\rm{aW/\sqrt{Hz}}$, at 12 Hz. In the OLIMPO cryostat, we measured the optical properties, such as the noise equivalent temperatures (NET) and the spectral responses. The measured NET$_{\rm RJ}$s are $200\:\mu\rm{K\sqrt{s}}$, $240\:\mu\rm{K\sqrt{s}}$, $240\:\mu\rm{K\sqrt{s}}$, and $\:340\mu\rm{K\sqrt{s}}$, at 12 Hz; under 78, 88, 92, and 90 mK Rayleigh-Jeans blackbody load changes respectively for the 150, 250, 350, and 460 GHz arrays. The spectral responses were characterized with the OLIMPO differential Fourier transform spectrometer (DFTS) up to THz frequencies, with a resolution of 1.8 GHz.

[1]  P. A. R. Ade,et al.  Exploring cosmic origins with CORE: Survey requirements and mission design , 2017, Journal of Cosmology and Astroparticle Physics.

[2]  Carole E. Tucker,et al.  Horn-coupled, commercially-fabricated aluminum lumped-element kinetic inductance detectors for millimeter wavelengths. , 2014, The Review of scientific instruments.

[3]  Jonas Zmuidzinas,et al.  Two-level system noise reduction for Microwave Kinetic Inductance Detectors , 2009, 0909.2060.

[4]  P. Bernardis,et al.  Development of Lumped Element Kinetic Inductance Detectors for the W-Band , 2016, 1601.01466.

[5]  P. Bernardis,et al.  A self-contained 3He refrigerator suitable for long duration balloon experiments , 1998 .

[6]  J. J. A. Baselmans,et al.  A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE , 2011, 1102.0870.

[7]  S. Withington,et al.  Quasiparticle generation efficiency in superconducting thin films , 2014, 1401.1937.

[8]  N. Llombart,et al.  The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band , 2015, 1505.06191.

[9]  S. Masi,et al.  Exploring cosmic origins with CORE: The instrument , 2017, 1705.02170.

[10]  N. Ponthieu,et al.  Latest NIKA Results and the NIKA-2 Project , 2013, 1310.1230.

[11]  P. A. R. Ade,et al.  GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  S. Masi,et al.  Ultra high molecular weight polyethylene: Optical features at millimeter wavelengths , 2018, 1803.05228.

[14]  Jiansong Gao,et al.  The physics of superconducting microwave resonators , 2008 .

[15]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[16]  Lorenzo Martinis,et al.  A Tiltable Single-Shot Miniature Dilution Refrigerator for Astrophysical Applications , 2013 .

[17]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[18]  M. Castellano,et al.  Design and Fabrication of the KID-Based Light Detectors of CALDER , 2016 .

[19]  R. B. Partridge,et al.  Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps , 2016, 1609.07263.

[20]  D. J. Fixsen,et al.  The Cosmic Microwave Background spectrum from the full COBE FIRAS data set , 1996 .

[21]  A. Benoit,et al.  Microfabrication Technology for Large Lekid Arrays: From Nika2 to Future Applications , 2015, 1601.03969.

[22]  Simon Dicker,et al.  An Open Source, FPGA-Based LeKID Readout for BLAST-TNG: Pre-Flight Results , 2016, 1611.05400.

[23]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[24]  P. Bernardis,et al.  A long duration cryostat suitable for balloon borne photometry , 1999 .

[25]  Luca Lamagna,et al.  Low-resolution spectroscopy of the Sunyaev-Zel’dovich effect and estimates of cluster parameters , 2011, 1111.4588.

[26]  Paolo de Bernardis,et al.  Common-mode rejection in Martin-Puplett spectrometers for astronomical observations at millimeter wavelengths. , 2015, Applied optics.

[27]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[28]  P. Bernardis,et al.  Common-mode rejection in Martin-Puplett spectrometers for astronomical observations at mm-wavelengths , 2015 .

[29]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[30]  T. Kitching,et al.  Exploring cosmic origins with CORE: Cluster science , 2017, 1703.10456.

[31]  Y. Zeldovich,et al.  Small-scale fluctuations of relic radiation , 1970, Astrophysics and Space Science.

[32]  Anthony J. Peacock,et al.  Quasiparticle-phonon downconversion in nonequilibrium superconductors , 2000 .

[33]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[34]  N. Ponthieu,et al.  First observation of the thermal Sunyaev-Zel’dovich effect with kinetic inductance detectors , 2013, 1310.6237.

[35]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[36]  M. Halpern,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 THE ATACAMA COSMOLOGY TELESCOPE (ACT): BEAM PROFILES AND FIRST SZ CLUSTER MAPS , 2022 .

[37]  P. Mauskopf,et al.  Lumped Element Kinetic Inductance Detectors , 2008 .

[38]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[39]  Mario Zannoni,et al.  Efficient differential Fourier-transform spectrometer for precision Sunyaev-Zel’dovich effect measurements , 2014, 1402.4091.