Visualization toolkit software

Information visualization is a discipline that takes data as an input and produces visual representations of that data in a form that can be readily understood by people. The overall goal of a Visualization Toolkit is to provide a library that can be used by professionals to construct appropriate visualizations so as to allow their data to be understood and used in decision-making. This article defines the major components of a visualization toolkit and provides details on how they can be implemented and the consequences and restrictions imposed by those decisions. WIREs Comput Stat 2012 doi: 10.1002/wics.1224 For further resources related to this article, please visit the WIREs website

[1]  Andreas Buja,et al.  Interactive High-Dimensional Data Visualization , 1996 .

[2]  Haim Levkowitz Perceptual steps along color scales , 1996 .

[3]  Catherine B. Hurley,et al.  Graphical Selection of Data Views , 2000 .

[4]  Christopher Ahlberg,et al.  Spotfire: an information exploration environment , 1996, SGMD.

[5]  Michael Friendly,et al.  Visions and Re-Visions of Charles Joseph Minard , 2002 .

[6]  Jan de Leeuw On Abandoning XLISP-STAT , 2005 .

[7]  Lucy T. Nowell,et al.  ThemeRiver: Visualizing Thematic Changes in Large Document Collections , 2002, IEEE Trans. Vis. Comput. Graph..

[8]  Cynthia A. Brewer,et al.  Guidelines for use of the perceptual dimensions of color for mapping and visualization , 1994, Electronic Imaging.

[9]  Adalbert Wilhelm,et al.  16 – Interactive Statistical Graphics: the Paradigm of Linked Views , 2005 .

[10]  Hong Chen Toward design patterns for dynamic analytical data visualization , 2004, IS&T/SPIE Electronic Imaging.

[11]  Eileen McDaniel,et al.  Rapid Graphs with Tableau Software: Create Intuitive, Actionable Insights in Just 15 Days - Volume 2 , 2009 .

[12]  Menno-Jan Kraak,et al.  Carte figurative des pertes successives en hommes de l'Armée Française dans la campagne de Russie 1812-1813 or Napoleon's March on Mowcow by Charles Minard 1861 , 2007 .

[13]  Deborah F. Swayne,et al.  Interactive and Dynamic Graphics for Data Analysis - With R and GGobi , 2007, Use R.

[14]  Duncan Temple Lang,et al.  GGobi meets R: an extensible environment for interactive dynamic data visualization , 2001 .

[15]  Duncan Temple Lang,et al.  GGobi: evolving from XGobi into an extensible framework for interactive data visualization , 2003, Comput. Stat. Data Anal..

[16]  Andreas Buja,et al.  Interactive data visualization using focusing and linking , 1991, Proceeding Visualization '91.

[17]  Warren F. Kuhfeld Statistical Graphics in SAS: An Introduction to the Graph Template Language and the Statistical Graphics Procedures , 2010 .

[18]  Martin Wattenberg,et al.  Arc diagrams: visualizing structure in strings , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[19]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[20]  David L. Donoho,et al.  MacSpin: dynamic graphics on a desktop computer , 1988, IEEE Computer Graphics and Applications.

[21]  Cynthia A. Brewer,et al.  Color Use Guidelines for Mapping and Visualization , 1994 .

[22]  Martin Wattenberg,et al.  ManyEyes: a Site for Visualization at Internet Scale , 2007, IEEE Transactions on Visualization and Computer Graphics.

[23]  Jürgen Symanzik,et al.  The linked ArcView 2.1 and XGobi environment—GIS, dynamic statistical graphics, and spatial data , 1996, GIS '96.

[24]  Robert McGill,et al.  Graphical Perception: The Visual Decoding of Quantitative Information on Graphical Displays of Data , 1987 .

[25]  Richard A. Becker,et al.  The Visual Design and Control of Trellis Display , 1996 .

[26]  Cynthia A. Brewer,et al.  ColorBrewer in Print: A Catalog of Color Schemes for Maps , 2003 .

[27]  Jeffrey Heer,et al.  prefuse: a toolkit for interactive information visualization , 2005, CHI.