Field development of Posidonia oceanica seedlings changes under predicted acidification conditions.

[1]  Yajuan Zheng,et al.  A blessing or a curse: Responses of eelgrass (Zostera marina) seedlings to combined stressors of nutrients, hypoxia and sulfide , 2023, Ecological Indicators.

[2]  D. Stengel,et al.  Effects of high temperature and marine heat waves on seagrasses: Is warming affecting the nutritional value of Posidonia oceanica? , 2022, Marine environmental research.

[3]  D. Stengel,et al.  Field thermo acclimation increases the resilience of Posidonia oceanica seedlings to marine heat waves. , 2022, Marine pollution bulletin.

[4]  Hsing-Juh Lin,et al.  Assessing the Effects of Ocean Warming and Acidification on the Seagrass Thalassia hemprichii , 2022, Journal of Marine Science and Engineering.

[5]  I. Caçador,et al.  Ocean Acidification Alleviates Dwarf Eelgrass (Zostera noltii) Lipid Landscape Remodeling under Warming Stress , 2022, Biology.

[6]  Nicolas Gruber,et al.  Changing Ocean, Marine Ecosystems, and Dependent Communities , 2022, The Ocean and Cryosphere in a Changing Climate.

[7]  V. Zupo,et al.  Ocean Acidification Affects Volatile Infochemicals Production and Perception in Fauna and Flora Associated With Posidonia oceanica (L.) Delile , 2022, Frontiers in Marine Science.

[8]  C. Vetriani,et al.  Microbial Biofilms Along a Geochemical Gradient at the Shallow-Water Hydrothermal System of Vulcano Island, Mediterranean Sea , 2022, Frontiers in Microbiology.

[9]  S. Dupont,et al.  How Does Ocean Acidification Affect the Early Life History of Zostera marina? A Series of Experiments Find Parental Carryover Can Benefit Viability or Germination , 2021, Frontiers in Marine Science.

[10]  D. Stengel,et al.  Seasonal Acclimation Modulates the Impacts of Simulated Warming and Light Reduction on Temperate Seagrass Productivity and Biochemical Composition , 2021, Frontiers in Marine Science.

[11]  I. Caçador,et al.  Dwarf eelgrass (Zostera noltii) fatty acid remodelling induced by climate change , 2021 .

[12]  G. Winters,et al.  Nutrient History Affects the Response and Resilience of the Tropical Seagrass Halophila stipulacea to Further Enrichment in Its Native Habitat , 2021, Frontiers in Plant Science.

[13]  J. Hall‐Spencer,et al.  Volcanic CO2 seep geochemistry and use in understanding ocean acidification , 2020, Biogeochemistry.

[14]  S. Doney,et al.  The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities , 2020, Annual Review of Environment and Resources.

[15]  D. Krause‐Jensen,et al.  Seagrass fatty acid profiles as a sensitive indicator of climate settings across seasons and latitudes. , 2020, Marine environmental research.

[16]  John N. Stockbridge,et al.  A meta-analysis of multiple stressors on seagrasses in the context of marine spatial cumulative impacts assessment , 2020, Scientific Reports.

[17]  C. Sanz-Lazaro,et al.  Heat wave intensity can vary the cumulative effects of multiple environmental stressors on Posidonia oceanica seedlings. , 2020, Marine Environmental Research.

[18]  M. Gambi,et al.  Effects of ocean acidification on phenology and epiphytes of the seagrass Posidonia oceanica at two CO2 vent systems of Ischia (Italy) , 2020, Mediterranean Marine Science.

[19]  C. Mundy,et al.  Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitat‐forming seaweed Phyllospora comosa (Labillardière) C.Agardh , 2020, Global change biology.

[20]  F. Badalamenti,et al.  The perfect microsite: How to maximize Posidonia oceanica seedling settlement success for restoration purposes using ecological knowledge. , 2019, Marine environmental research.

[21]  J. Marques,et al.  Dwarf eelgrass (Zostera noltii) leaf fatty acid profile during a natural restoration process: Physiological and ecological implications , 2019, Ecological Indicators.

[22]  Hanna K. Nuuttila,et al.  Sowing the Seeds of Seagrass Recovery Using Hessian Bags , 2019, Front. Ecol. Evol..

[23]  Ben P. Harvey,et al.  Ocean acidification impacts on coastal ecosystem services due to habitat degradation , 2019, Emerging topics in life sciences.

[24]  P. Polymenakou,et al.  Plant and sediment properties in seagrass meadows from two Mediterranean CO2 vents: Implications for carbon storage capacity of acidified oceans. , 2019, Marine environmental research.

[25]  A. Brito,et al.  Effects of ocean acidification on algae growth and feeding rates of juvenile sea urchins. , 2018, Marine environmental research.

[26]  W. Dennison,et al.  Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region , 2018, Proceedings of the National Academy of Sciences.

[27]  J. Ruíz,et al.  Effects of an experimental heat wave on fatty acid composition in two Mediterranean seagrass species. , 2018, Marine pollution bulletin.

[28]  Jimena Samper-Villarreal,et al.  Seagrass ecosystem services - What's next? , 2017, Marine pollution bulletin.

[29]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[30]  J. Hall‐Spencer,et al.  Effects of ocean acidification on the shells of four Mediterranean gastropod species near a CO2 seep. , 2017, Marine pollution bulletin.

[31]  M. Gambi,et al.  Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers , 2017, Scientific Reports.

[32]  Carlos M. Duarte,et al.  Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica , 2017 .

[33]  C. Duarte,et al.  Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory , 2016, Scientific Reports.

[34]  M. Kumar,et al.  Metabolomics: an emerging frontier of systems biology in marine macrophytes , 2016 .

[35]  G. Kendrick,et al.  Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. , 2016, Plant, cell & environment.

[36]  J. Gattuso,et al.  Effects of in situ CO 2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica , 2016 .

[37]  W. Giesen,et al.  Global analysis of seagrass restoration: the importance of large-scale planting , 2016 .

[38]  K. Fabricius,et al.  The effects of long-term in situ CO2 enrichment on tropical seagrass communities at volcanic vents , 2016 .

[39]  S. Flecha,et al.  Trends of pH decrease in the Mediterranean Sea through high frequency observational data: indication of ocean acidification in the basin , 2015, Scientific Reports.

[40]  J. Gattuso,et al.  Effects of ocean acidification on Posidonia oceanica epiphytic community and shoot productivity , 2015 .

[41]  S. Mazzola,et al.  Assessing Posidonia oceanica Seedling Substrate Preference: An Experimental Determination of Seedling Anchorage Success in Rocky vs. Sandy Substrates , 2015, PloS one.

[42]  R. Nys,et al.  Seasonal and within-plant variation in fatty acid content and composition in the brown seaweed Spatoglossum macrodontum (Dictyotales, Phaeophyceae) , 2015, Journal of Applied Phycology.

[43]  B. Russell,et al.  Seagrass response to CO2 contingent on epiphytic algae: indirect effects can overwhelm direct effects , 2014, Oecologia.

[44]  I. Hendriks,et al.  Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. , 2014, Marine environmental research.

[45]  J. Hall‐Spencer,et al.  Ocean acidification impairs vermetid reef recruitment , 2014, Scientific Reports.

[46]  S. Vizzini,et al.  Trace element bias in the use of CO2 vents as analogues for low pH environments: Implications for contamination levels in acidified oceans , 2013 .

[47]  P. Brewer A short history of ocean acidification science in the 20th century: a chemist's view , 2013 .

[48]  M. Gullström,et al.  Photosynthetic activity of seagrasses and macroalgae in temperate shallow waters can alter seawater pH and total inorganic carbon content at the scale of a coastal embayment , 2013 .

[49]  J. Hall‐Spencer,et al.  Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. , 2013, Marine pollution bulletin.

[50]  K. Fabricius,et al.  Future seagrass beds: can increased productivity lead to increased carbon storage? , 2013, Marine pollution bulletin.

[51]  J. Hall‐Spencer,et al.  Responses of marine benthic microalgae to elevated CO2 , 2011, Marine Biology.

[52]  J. Terrados,et al.  Use of Posidonia oceanica seedlings from beach-cast fruits for seagrass planting , 2013 .

[53]  M. Koch,et al.  Climate change and ocean acidification effects on seagrasses and marine macroalgae , 2013, Global change biology.

[54]  G. Henderson,et al.  Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification , 2012 .

[55]  J. Hall‐Spencer,et al.  Ocean Acidification and the Loss of Phenolic Substances in Marine Plants , 2012, PloS one.

[56]  T. Reusch,et al.  Widespread occurrence of endophytic Labyrinthula spp. in northern European eelgrass Zostera marina beds , 2012 .

[57]  D. Renault,et al.  Integrative analysis of metabolite and transcript abundance during the short-term response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. , 2011, Plant, cell & environment.

[58]  F. Touratier,et al.  Impact of the Eastern Mediterranean Transient on the distribution of anthropogenic CO2 and first estimate of acidification for the Mediterranean Sea , 2011 .

[59]  Rafael Rubio de Casas,et al.  Germination, Postgermination Adaptation, and Species Ecological Ranges , 2010 .

[60]  S. Vizzini,et al.  Effect of explosive shallow hydrothermal vents on δ13C and growth performance in the seagrass Posidonia oceanica , 2010 .

[61]  Gerald G Singh,et al.  Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. , 2010, Ecology letters.

[62]  J. Hall‐Spencer,et al.  Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents , 2010 .

[63]  Núria Marbà,et al.  Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality , 2009 .

[64]  E. Balestri,et al.  Seed nutrient content and nutritional status of Posidonia oceanica seedlings in the northwestern Mediterranean Sea , 2009 .

[65]  B. Kloareg,et al.  Free Fatty Acids and Methyl Jasmonate Trigger Defense Reactions in Laminaria digitata. , 2009, Plant & cell physiology.

[66]  C. Parrish Essential Fatty Acids in Aquatic Food Webs , 2009 .

[67]  T. Tonon,et al.  Copper stress induces biosynthesis of octadecanoid and eicosanoid oxygenated derivatives in the brown algal kelp Laminaria digitata , 2008 .

[68]  Emma Ransome,et al.  Volcanic carbon dioxide vents show ecosystem effects of ocean acidification , 2008, Nature.

[69]  N. Sanina,et al.  Seasonal changes of fatty acid composition and thermotropic behavior of polar lipids from marine macrophytes. , 2008, Phytochemistry.

[70]  Richard A. Feely,et al.  Impacts of ocean acidification on marine fauna and ecosystem processes , 2008 .

[71]  Richard C. Zimmerman,et al.  Response of Eelgrass Zostera marina to CO2 Enrichment: Possible Impacts of Climate Change and Potential for Remediation of Coastal Habitats , 2007 .

[72]  Frederick T. Short,et al.  A Global Crisis for Seagrass Ecosystems , 2006 .

[73]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[74]  H. Thornton,et al.  Effect of increased atmospheric CO2 on shallow water marine benthos , 2005 .

[75]  H. Pörtner,et al.  Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels (Mytilus galloprovincialis) , 2005 .

[76]  D. Los,et al.  Membrane fluidity and its roles in the perception of environmental signals. , 2004, Biochimica et biophysica acta.

[77]  C. Somerville,et al.  Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition , 2004, BMC Plant Biology.

[78]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[79]  N. Sanina,et al.  Fatty acid composition of individual polar lipid classes from marine macrophytes. , 2004, Phytochemistry.

[80]  Marti J. Anderson,et al.  CANONICAL ANALYSIS OF PRINCIPAL COORDINATES: A USEFUL METHOD OF CONSTRAINED ORDINATION FOR ECOLOGY , 2003 .

[81]  S. Beer,et al.  Inorganic carbon utilization in marine angiosperms (seagrasses). , 2002, Functional plant biology : FPB.

[82]  M. Ramsey,et al.  Relationships between Seed Mass, Seed Nutrients, and Seedling Growth in Banksia cunninghamii (Proteaceae) , 2001, International Journal of Plant Sciences.

[83]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[84]  Stefan Fischer,et al.  Trienoic fatty acids are required to maintain chloroplast function at low temperatures. , 2000, Plant physiology.

[85]  F. A. Bazzaz,et al.  Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees , 2000, Oecologia.

[86]  N. Murata,et al.  Lipids in Photosynthesis: An Overview , 1998 .

[87]  R. Zimmerman,et al.  Impacts of CO2 Enrichment on Productivity and Light Requirements of Eelgrass , 1997, Plant physiology.

[88]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[89]  S. Beer,et al.  Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments , 1996 .

[90]  R. Thom CO2-Enrichment effects on eelgrass (Zostera marina L.) and bull kelp (Nereocystis luetkeana (mert.) P & R.) , 1996 .

[91]  M. J. Durako Photosynthetic utilization of CO2(aq) and HCO3- in Thalassia testudinum (Hydrocharitaceae) , 1993 .

[92]  R. Holman Nutritional and functional requirements for essential fatty acids. , 1986, Progress in clinical and biological research.

[93]  K. Wittmann Temporal and Morphological Variations of Growth in a Natural Stand of Posidonia oceanica (L.) Delile , 1984 .

[94]  S. Hurlbert Pseudoreplication and the Design of Ecological Field Experiments , 1984 .