Low threading dislocation density in GaN films grown on patterned sapphire substrates

The growth process of three-dimensional growth mode (3D) switching to two-dimensional growth mode (2D) is investigated when GaN films are grown on cone-shaped patterned sapphire substrates by metal-organic chemical vapor deposition. The growth condition of the 3D-2D growth process is optimized to reduce the threading dislocation density (TDD). It is found that the condition of the 3D layer is critical. The 3D layer keeps growing under the conditions of low V/III ratio, low temperature, and high pressure until its thickness is comparable to the height of the cone-shaped patterns. Then the 3D layer surrounds the cone-shaped patterns and has inclined side facets and a top (0001) plane. In the following 2D-growth process, inclined side facets coalesce quickly and the interaction of TDs with the side facets causes the TDs to bend over. As a result, the TDD of GaN films can decrease to 1 10 8 cm 2 , giving full-width at half maximum values of 211 and 219 arcsec for (002) and (102) omega scans, respectively.