Effects of Flow and Geometry Boundary Conditions on Fluid Motion in a Motored IC Model Engine

Measurements of ensemble-averaged axial velocities and the r.m.s. of the corresponding fluctuations, obtained by laser-Doppler anemometry, are reported for axisymmetric flow in a non-compressing piston-cylinder assembly motored at 200 rev/min simulating an IC engine. The inlet geometry comprised an open valve, located centrally and flush with the cylinder head, with seat angles of 30° and 60° and incorporating 30° swirl vanes. Results are presented for bore-to-stroke ratios of 0.83 and 1.25 and swept-to-clearance volume ratios of 2,3 and 9. The results indicate strong similarities between the flow structures for different stroke and clearance; a system of vortices is formed with a large vortex occupying most of the flow space and with smaller vortices in the corners between the wall, piston and cylinder head. The influence of valve seat angle is more pronounced and results, for the 30° angle, in adherence of the incoming jet to the cylinder head with increase of the overall turbulence levels and creation ...