The finite-temperature relativistic Landau problem and the relativistic quantum Hall effect

This paper presents a study of the free energy and particle density of the relativistic Landau problem, and their relevance to the quantum Hall effect. First we study the zero-temperature Casimir energy and fermion number for Dirac fields in a (2+1)-dimensional Minkowski spacetime, in the presence of a uniform magnetic field perpendicular to the spatial manifold. Then, we go to the finite-temperature problem, with a chemical potential, introduced as a uniform zero component of the gauge potential. By performing a Lorentz boost, we obtain Hall's conductivity in the case of crossed electric and magnetic fields.

[1]  C. G. Beneventano,et al.  Relativistic Landau problem at finite temperature , 2005, hep-th/0511108.

[2]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[3]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[4]  V. Gusynin,et al.  Unconventional integer quantum Hall effect in graphene. , 2005, Physical review letters.

[5]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[6]  C. G. Beneventano,et al.  Finite-temperature properties of the Dirac operator under local boundary conditions , 2004, hep-th/0404115.

[7]  E. Elizalde,et al.  Dirac Functional Determinants in Terms of the Eta Invariant and the Noncommutative Residue , 1999, hep-th/9910038.

[8]  Tsuneya Ando,et al.  Hall conductivity of a two-dimensional graphite system , 2002 .

[9]  D. Cabra,et al.  On planar fermions with quartic interaction at finite temperature and density , 2001, cond-mat/0106609.

[10]  A. Vshivtsev,et al.  Dynamical effects in (2+1)-dimensional theories with four-fermion interaction , 1998 .

[11]  E. Elizalde Ten Physical Applications of Spectral Zeta Functions , 1995 .

[12]  Gusynin,et al.  Dynamical flavor symmetry breaking by a magnetic field in 2+1 dimensions. , 1995, Physical review. D, Particles and fields.

[13]  T. Chakraborty,et al.  The Quantum Hall Effects: Integral and Fractional , 1995 .

[14]  M. Kontsevich,et al.  Geometry of determinants of elliptic operators , 1994, hep-th/9406140.

[15]  T. Chakraborty,et al.  The Quantum Hall Effects , 1995 .

[16]  James Lepowsky,et al.  Functional Analysis on the Eve of the 21st Century , 1995 .

[17]  A. Niemi,et al.  Fermion number fractionization in quantum field theory , 1986 .

[18]  A. Actor Chemical potentials in gauge theories , 1985 .

[19]  Klaus von Klitzing,et al.  Quantized hall effect , 1983 .

[20]  J. S. Dowker,et al.  Effective Lagrangian and energy-momentum tensor in de Sitter space , 1976 .

[21]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .