Quantum Parrondo's games

Parrondo's paradox arises when two losing games are combined to produce a winning one. A history-dependent quantum Parrondo game is studied where the rotation operators that represent the toss of a classical biased coin are replaced by general SU(2) operators to transform the game into the quantum domain. In the initial state, a superposition of qubits can be used to couple the games and produce interference leading to quite different payoffs to those in the classical case.

[1]  P. Hayden,et al.  Comment on "quantum games and quantum strategies". , 2000, Physical Review Letters.

[2]  J. Eisert,et al.  Eisert, Wilkens, and Lewenstein Reply: , 2001 .

[3]  R. Toral Cooperative Parrondo's Games , 2001 .

[4]  Hui Li,et al.  Quantum Strategy Without Entanglement , 2000, quant-ph/0011078.

[5]  Derek Abbott,et al.  Game theory: Losing strategies can win by Parrondo's paradox , 1999, Nature.

[6]  Azhar Iqbal,et al.  Evolutionarily stable strategies in quantum games , 2000 .

[7]  Luca Marinatto,et al.  Reply to “Comment on: A quantum approach to static games of complete information” , 2000 .

[8]  Neil F. Johnson Playing a quantum game with a corrupted source , 2001 .

[9]  Azhar Iqbal,et al.  Quantum mechanics gives stability to a Nash equilibrium , 2002 .

[10]  D. Meyer Quantum strategies , 1998, quant-ph/9804010.

[11]  Jiangfeng Du,et al.  Experimental realization of quantum games on a quantum computer. , 2001, Physical Review Letters.

[12]  Derek Abbott,et al.  Parrondo's paradox , 1999 .

[13]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[14]  Peter V. E. McClintock,et al.  Random fluctuations: Unsolved problems of noise , 1999, Nature.

[15]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[16]  Guang-Can Guo,et al.  Quantum strategies of quantum measurements , 2001 .

[17]  D. Abbott,et al.  Quantum version of the Monty Hall problem , 2001, quant-ph/0109035.

[18]  Derek Abbott,et al.  Brownian ratchets and Parrondo's games. , 2001, Chaos.

[19]  J. Eisert,et al.  Reply: Eisert, Wilkens, and Lewenstein , 2001 .

[20]  Simon C. Benjamin,et al.  Multiplayer quantum games , 2001 .

[21]  David A. Meyer,et al.  Parrondo Games as Lattice Gas Automata , 2001 .

[22]  Azhar Iqbal,et al.  Entanglement and dynamic stability of Nash equilibria in a symmetric quantum game , 2001 .

[23]  Edward W. Piotrowski,et al.  An Invitation to Quantum Game Theory , 2002, ArXiv.

[24]  Abbott,et al.  New paradoxical games based on brownian ratchets , 2000, Physical review letters.

[25]  Luca Marinatto,et al.  A quantum approach to static games of complete information , 2000 .

[26]  Jens Eisert,et al.  Quantum games , 2000 .