Infrared spectra and pseudopotential calculations for NUO+, NUO, and NThO in solid neon

The title cation and molecules have been prepared by reactions of laser-ablated metal cations and atoms with NO during condensation in excess neon at 4 K. Infrared fundamentals for the NUO and NThO molecules blue shift 1.6%–2.9% on going from argon to neon matrices and are calculated from 5.8% to 0.0% too high using density functional theory, GAUSSIAN 98, and pseudopotentials on the actinide metal. The isolated NUO+ cation, formed in previous gas-phase ion–molecule reactions, is characterized by new 1118.6 and 969.8 cm−1 neon matrix absorptions. Two normal modes (isotopic frequencies) are accurately modeled by the calculations for NUO+, NUO, and NThO. The isolated NUO+ cation observed here provides a vibrational model for its important isoelectronic UO22+ analog, which has only been characterized in condensed phases where partial neutralization of the dication readily occurs.

[1]  Lester Andrews,et al.  Reactions of laser-ablated Co, Rh, and Ir with CO: Infrared spectra and density functional calculations of the metal carbonyl molecules, cations and anions in solid neon , 1999 .

[2]  L. Andrews,et al.  Infrared spectra and density functional calculations of Cu(CO)1–4+, Cu(CO)1–3, and Cu(CO)1–3− in solid neon , 1999 .

[3]  Lester Andrews,et al.  Infrared Spectra and Density Functional Calculations of RuCO+, OsCO+, Ru(CO)x, Os(CO)x, Ru(CO)x- and Os(CO)x- (x = 1−4) in Solid Neon , 1999 .

[4]  L. Andrews,et al.  Infrared Spectra and Density Functional Calculations of Small Vanadium and Titanium Carbonyl Molecules and Anions in Solid Neon , 1999 .

[5]  G. Kushto,et al.  An Infrared Spectroscopic and Density Functional Theoretical Investigation of the Reaction Products of Laser-Ablated Scandium and Titanium Atoms with Nitric Oxide , 1999 .

[6]  L. Andrews,et al.  Reactions of laser-ablated iron atoms and cations with carbon monoxide: Infrared spectra of FeCO+, Fe(CO)2+, Fe(CO)x, and Fe(CO)x− (x=1–4) in solid neon , 1999 .

[7]  A. Snis,et al.  Infrared spectra of (NO)2+, (NO)2−, and (NO)3− trapped in solid neon , 1999 .

[8]  T. Saue,et al.  Theoretical studies of the actinides: method calibration for the UO22+ and PuO22+ ions , 1999 .

[9]  A. Snis,et al.  Infrared spectra of cis and trans-(NO)(2)(-) anions in solid argon , 1998 .

[10]  G. Kushto,et al.  An infrared spectroscopic and quasirelativistic theoretical study of the coordination and activation of dinitrogen by thorium and uranium atoms , 1998 .

[11]  M. Neurock,et al.  A matrix isolation FT–IR and quasirelativistic density functional theory investigation of the reaction products of laser-ablated uranium atoms with NO, NO2 and N2O , 1997 .

[12]  H. Schwarz,et al.  NUO+, a New Species Isoelectronic to the Uranyl Dication UO , 1995 .

[13]  M. Jacox The Vibrational Energy Levels of Small Transient Molecules Isolated in Neon and Argon Matrices , 1994 .

[14]  Michael Dolg,et al.  Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide , 1994 .

[15]  N. Runeberg,et al.  Quasirelativistic Pseudopotential Study of Species Isoelectronic to Uranyl and the Equatorial Coordination of Uranyl , 1994 .

[16]  R. Hunt,et al.  Matrix infrared spectra of NUN formed by the insertion of uranium atoms into molecular nitrogen , 1993 .

[17]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[18]  R. Hunt,et al.  Reactions of pulsed‐laser evaporated uranium atoms with molecular oxygen: Infrared spectra of UO, UO2, UO3, UO2+, UO22+, and UO3–O2 in solid argon , 1993 .

[19]  L. Andrews,et al.  Pulsed laser-assisted reactions of boron and nitrogen atoms in a condensing nitrogen stream , 1992 .

[20]  János Mink,et al.  Vibrational spectroscopic studies of uranyl complexes in aqueous and non-aqueous solutions , 1992 .

[21]  Lester Andrews,et al.  Reactions of boron atoms with molecular oxygen. Infrared spectra of BO, BO2, B2O2, B2O3, and BO−2 in solid argon , 1991 .

[22]  Bruce E. Bursten,et al.  The Electronic Structure of Actinide-Containing Molecules: A Challenge to Applied Quantum Chemistry , 1991 .

[23]  P. Pyykkö,et al.  REX calculations. 12. Iteration parameters for the 5f-element organometallics of thorium-neptunium. Geometries of thorium dioxide and uranyl ion revisited , 1989 .

[24]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[25]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[26]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[27]  G. T. Reedy,et al.  The identification of UN in Ar matrices , 1976 .

[28]  S. D. Gabelnick,et al.  Infrared spectra of matrix‐isolated UO+2 and NO−2 , 1976 .

[29]  S. D. Gabelnick,et al.  Infrared spectra and structure of some matrix‐isolated lanthanide and actinide oxides , 1974 .

[30]  L. Andrews,et al.  Matrix reactions of sodium, potassium, rubidium, and cesium atoms with nitric oxide. Infrared spectra of the metal(+) nitroxide(-) species , 1973 .

[31]  M. G. Chasanov,et al.  Infrared spectra of matrix-isolated uranium oxide species. I. The stretching region , 1973 .