A search and rescue robot with tele-operated tether docking system

Purpose – To describe a robot designed and built to operate in outdoor environments hostile to the human presence, such as debris resulting from the collapse of built structures, and targeted to the tele‐operated detection of potential survivors using a set of specific sensors whose information is transmitted to a remote human operator.Design/methodology/approach – RAPOSA's mechanical structure is composed of a main body and a front body, whose locomotion is supported on tracked wheels, allowing motion even when the robot is upside down. The front body has variable tilting capabilities, providing means to overcome edges higher than the robot main body (e.g. when climbing a stair) and is also useful to grab the lower ground when only the main body has ground contact. This front body has one thermal camera and two webcameras installed. Additional sensors include gas, temperature and humidity sensors, web cams, light diodes, microphone and loudspeaker. The robot uses wireless communications, with an option f...

[1]  Hiroaki Kitano,et al.  The RoboCup-Rescue project: a robotic approach to the disaster mitigation problem , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Brian A. Weiss,et al.  Evolution of a Performance Metric for Urban Search and Rescue Robots (2003) , 2003 .

[3]  Robin R. Murphy,et al.  Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[4]  João Frazão,et al.  Agent-based software architecture for multi-robot teams , 2004 .