Interatomic pair potentials from DFT and molecular dynamics for Ca, Ba, and Sr hexaborides

Alkaline earth hexaborides are thermoelectric materials with unique thermophysical properties that have a broad variety of applications with great potential for new uses in fields such as light-weight armor development, gas storage, and n-type thermoelectrics. In this work, we introduce a modeling framework to simulate the basic mechanical behavior of these materials with molecular dynamics. We use a combination of density functional theory, molecular dynamics, and optimization methods to produce a set of interatomic potentials which can describe accurately the equilibrium energetics and mean-square displacements of atoms within these bulk hexaborides. The model works particularly well for hexaborides with large cations.

[1]  F. Liu,et al.  Structure and chemical bond characteristics of LaB6 , 2009 .

[2]  H. G. Smith,et al.  Experimental study of lattice dynamics in LaB6 and YbB6 , 1985 .

[3]  Ren,et al.  Carlsson-Gelatt-Ehrenreich technique and the Möbius inversion theorem. , 1992, Physical review. B, Condensed matter.

[4]  A. Continenza,et al.  Electronic structure of divalent hexaborides , 1996 .

[5]  C. Politis,et al.  Characterization of B4C and LaB6 by Ultrasonics and X-Rays Diffraction , 2003 .

[6]  Y. Grin,et al.  Position‐Space Bonding Indicators for Hexaborides of Alkali, Alkaline‐Earth, and Rare‐Earth Metals in Comparison to the Molecular Crystal K2[B6H6] , 2013 .

[7]  S. M. Ivanov,et al.  Penetration Resistance of B4C-CaB6 Based Light-Weight Armor Materials , 2013 .

[8]  S. Kawai,et al.  Elastic constants of LaB6 at room temperature , 1977 .

[9]  X. Huang,et al.  Combustion synthesis of CaB6 powder from calcium hexaborate and Mg , 2010 .

[10]  H. C. Longuet-Higgins,et al.  The electronic structure of the borides MB6 , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  G. Giunchi,et al.  Synthesis of Alkaline-earth hexaborides, MB6 (M = Ca, Ba, Sr), by a solid state metathesis (SSM) reaction , 2012 .

[12]  Michiel J. van Setten,et al.  Thermodynamic stability of boron: the role of defects and zero point motion. , 2007, Journal of the American Chemical Society.

[13]  A. Watanabe,et al.  Screening of the possible boron-based n-type thermoelectric conversion materials on the basis of the calculated densities of states of metal borides and doped β-boron , 2001 .

[14]  T. Nagao,et al.  Surface atomic structure and surface force constants: Cu(100)2√2 × √2-R45°-O and LaB6(100) , 1993 .

[15]  R. Buckingham,et al.  The Classical Equation of State of Gaseous Helium, Neon and Argon , 1938 .

[16]  E. Pollak,et al.  Accurate computation of quantum densities of states and RRKM rate constants for large polyatomic molecules: The STAIR method , 1999 .

[17]  M. M. Piñeiro,et al.  Understanding the Phase Behavior of Tetrahydrofuran + Carbon Dioxide, + Methane, and + Water Binary Mixtures from the SAFT-VR Approach. , 2015, The journal of physical chemistry. B.

[18]  O. Graeve,et al.  Unique Preparation of Hexaboride Nanocubes: A First Example of Boride Formation by Combustion Synthesis , 2010 .

[19]  G. Ji,et al.  Elastic and thermodynamic properties of CaB6 under pressure from first principles , 2011 .

[20]  B. Albert,et al.  Crystal and electronic structure of BaB6 in comparison with CaB6 and molecular [B6H6]2− , 2001 .

[21]  O. Graeve,et al.  Mechanisms of combustion synthesis and magnetic response of high-surface-area hexaboride compounds. , 2011, ACS applied materials & interfaces.

[22]  C. D. Gelatt,et al.  An ab initio pair potential applied to metals , 1980 .

[23]  G. Ji,et al.  First-principles investigations on elastic, phonon and thermodynamic properties of SrB6 under pressure , 2012 .

[24]  F. Aryasetiawan,et al.  Abnormal quasiparticle shifts inCaB6 , 2002 .

[25]  A. Daane,et al.  Electron Requirements of Bonds in Metal Borides , 1963 .

[26]  V. Craciun,et al.  Pulsed laser deposition of crystalline LaB6 thin films , 2005 .

[27]  L. Bao,et al.  Enhanced thermionic emission properties in textured two-phase LaB6–BaB6 system prepared by spark plasma sintering , 2014 .

[28]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[29]  T. Lundstrom Structure, defects and properties of some refractory borides , 1985 .

[30]  Yanming Zhao,et al.  Self-catalyst growth of single-crystalline CaB6 nanostructures , 2007 .

[31]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[32]  V. Novikov Mean-square displacements of metal and boron atoms in crystal lattices of rare-earth hexaborides , 2003 .

[33]  Feng-Shou Zhang,et al.  Electron dynamics in CaB6 induced by one- and two-color femtosecond laser , 2013 .

[34]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  Lin-wang Wang,et al.  Electronic structure of Calcium hexaborides , 2005 .

[36]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[37]  K. Maiti Role of vacancies and impurities in the ferromagnetism of semiconducting CaB6 , 2008, 0804.0147.

[38]  K. Schwarz,et al.  Electronic Structure Calculations of Hexaborides and Boron Carbide , 1997 .

[39]  M. Takeda,et al.  High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties , 2015 .

[40]  K. Maiti,et al.  Revelation of the role of impurities and conduction electron density in the high resolution photoemission study of ferromagnetic hexaborides. , 2007, Physical review letters.

[41]  Kimura,et al.  Electronic structure of rare-earth hexaborides. , 1992, Physical review. B, Condensed matter.

[42]  J. Roth,et al.  Single Crystalline Alkaline-Earth Metal Hexaboride One-Dimensional (1D) Nanostructures: Synthesis and Characterization , 2009 .

[43]  Shuqi Zheng,et al.  Reaction synthesis and formation mechanism of barium hexaboride , 2003 .

[44]  M. Takeda,et al.  Improvement of thermoelectric properties of alkaline-earth hexaborides , 2006 .

[45]  Y. Qiao,et al.  Impact of microscopic bonding on the thermal stability and mechanical property of CaB6: A first-principles investigation , 2014 .

[46]  O. Eriksson,et al.  Electronic structure and bulk properties of MB6 and MB12 borides , 2008 .

[47]  Akira Sato,et al.  Structural refinement and thermal expansion of hexaborides , 2004 .