PROBING THE LONG GAMMA-RAY BURST PROGENITOR BY Lyα EMISSION OF HOST GALAXIES

Long gamma-ray bursts (GRBs) have been suggested to occur preferentially in low-metallicity environment. We discuss the possibility and theoretical aspects of using Lyα emission properties of long GRB host galaxies as a metallicity indicator of high-redshift GRB environments, where direct metallicity measurements are not easy. We propose to use the fraction of Lyα emitters (LAEs) in long GRB host galaxies as a function of UV luminosity, which can be compared with star formation rate weighted LAE fraction of Lyman break galaxies as the standard in the case of no metallicity dependence. There are two important effects of metallicity dependence of long GRB rate to change the LAE fraction of host galaxies. One is the enhancement of intrinsic Lyα equivalent width (EW) by stronger ionizing UV luminosity of low-metallicity stellar population, and the other is extinction by interstellar dust to change the observable EW. Based on a latest theoretical model of LAEs that reproduce observations, we argue that the latter is likely to work in the opposite direction to the former, i.e., to decrease LAE fraction if GRBs preferentially occur in low-metallicity environments, because of the clumpy interstellar medium effect. The high LAE fraction of GRB host galaxies indicated by observations is quantitatively explained by the LAE model if GRBs occur when Z ≲ 0.1 Z☉, although this result is still indicative because of the limited statistics and theoretical uncertainties. This result demonstrates that the LAE statistics of GRB hosts may give us useful information in the future.

[1]  Iap,et al.  ON THE REDSHIFT EVOLUTION OF THE Lyα ESCAPE FRACTION AND THE DUST CONTENT OF GALAXIES , 2010, 1010.4796.

[2]  Tomonori Totani,et al.  Lyα EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION , 2009, 0902.2882.

[3]  J. Trump,et al.  ERRATUM: “PHOTOMETRIC PROPERTIES OF Lyα EMITTERS AT z ≈ 4.86 IN THE COSMOS 2 SQUARE DEGREE FIELD” (2009, ApJ, 696, 546) , 2009, 0901.4627.

[4]  Eso - Garching,et al.  Evolution in the properties of Lyman-α emitters from redshifts z ~ 3 to z ~ 2 , 2008, 0812.3152.

[5]  J. X. Prochaska,et al.  HIGH-REDSHIFT STARBURSTING DWARF GALAXIES REVEALED BY γ-RAY BURST AFTERGLOWS , 2008, 0809.2608.

[6]  J. Newman,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 11/26/03 THE DEEP2 REDSHIFT SURVEY: LYMAN ALPHA EMITTERS IN THE SPECTROSCOPIC DATABASE 1 , 2022 .

[7]  S. Finkelstein,et al.  LYMAN ALPHA GALAXIES: PRIMITIVE, DUSTY, OR EVOLVED? , 2008, 0806.3269.

[8]  Observatoire de Geneve,et al.  On the Detectability of Lyman-alpha Emission in Star-forming Galaxies: The Role of Dust , 2008, 0805.3501.

[9]  S. Savaglio,et al.  THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS , 2008, 0803.2718.

[10]  Alan Dressler,et al.  A Magellan IMACS Spectroscopic Search for Lyα-emitting Galaxies at Redshift 5.7 , 2008, 0802.2393.

[11]  L. Danese,et al.  Long gamma-ray bursts and their host galaxies at high redshift , 2008, 0802.0787.

[12]  T. Totani,et al.  Lyα Emitters in Hierarchical Galaxy Formation , 2007 .

[13]  E. Gawiser,et al.  Spitzer Constraints on the Stellar Populations of Lyα-Emitting Galaxies at z = 3.1 , 2007, 0710.3384.

[14]  K. Schawinski,et al.  Lyα-Emitting Galaxies at z = 3.1: L* Progenitors Experiencing Rapid Star Formation , 2007, 0710.2697.

[15]  S. Finkelstein,et al.  Effects of Dust Geometry in Lyα Galaxies at z = 4.4 , 2007, 0708.4226.

[16]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[17]  Takashi Hattori,et al.  Reionization and Galaxy Evolution Probed by z = 7 Lyα Emitters , 2007, 0707.1561.

[18]  Mark Dickinson,et al.  Multiwavelength Constraints on the Cosmic Star Formation History from Spectroscopy: The Rest-Frame Ultraviolet, Hα, and Infrared Luminosity Functions at Redshifts 1.9 ≲ z ≲ 3.4 , 2007, 0706.4091.

[19]  L. F. Grove,et al.  A multi-wavelength study of z = 3.15 Lyman-α emitters in the GOODS south field , 2007, 0706.1070.

[20]  T. Totani,et al.  Lyman Alpha Emitters in the Hierarchically Clustering Galaxy Formation , 2007, 0705.4349.

[21]  L. Infante,et al.  Lyα Emission-Line Galaxies at z = 3.1 in the Extended Chandra Deep Field-South , 2007, 0705.3917.

[22]  S. Finkelstein,et al.  The Ages and Masses of Lyα Galaxies at z ~ 4.5 , 2007 .

[23]  C. Leitherer,et al.  Models for Massive Stellar Populations with Rotation , 2007, astro-ph/0703699.

[24]  G. Granato,et al.  The Role of the Dust in Primeval Galaxies: A Simple Physical Model for Lyman Break Galaxies and Lyα Emitters , 2006, astro-ph/0611799.

[25]  S. E. Nuza,et al.  The host galaxies of long-duration gamma-ray bursts in a cosmological hierarchical scenario , 2006, astro-ph/0611122.

[26]  Jia-Sheng Huang,et al.  The Stellar Population of Lyα-emitting Galaxies at z ~ 5.7 , 2006, astro-ph/0610572.

[27]  T. Morokuma,et al.  A galaxy at a redshift z = 6.96 , 2006, Nature.

[28]  Boulder,et al.  The redshift distribution of Swift gamma‐ray bursts: evidence for evolution , 2006, astro-ph/0607618.

[29]  C. Wolf,et al.  The metallicity dependence of the long-duration gamma-ray burst rate from host galaxy luminosities , 2006, astro-ph/0606725.

[30]  N. Langer,et al.  Single star progenitors of long gamma-ray bursts - I. Model grids and redshift dependent GRB rate , 2006, astro-ph/0606637.

[31]  C. Conselice,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[32]  K. Schawinski,et al.  The Physical Nature of Lyα-emitting Galaxies at z = 3.1 , 2006, astro-ph/0603244.

[33]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[34]  N. Langer,et al.  On the Collapsar Model of Long Gamma-Ray Bursts:Constraints from Cosmic Metallicity Evolution , 2005, astro-ph/0512271.

[35]  Ranga-Ram Chary,et al.  Spitzer Constraints on the z = 6.56 Galaxy Lensed by Abell 370 , 2005, astro-ph/0510827.

[36]  S. Okamura,et al.  Clustering of Lyman Break Galaxies at z = 4 and 5 in the Subaru Deep Field: Luminosity Dependence of the Correlation Function Slope , 2005, astro-ph/0509564.

[37]  N. Langer,et al.  Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005, astro-ph/0508242.

[38]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[39]  S. Oh,et al.  Lyman α radiative transfer in a multiphase medium , 2005, astro-ph/0507586.

[40]  E. H. Gudmundsson,et al.  Ly+ and ultraviolet emission from high-redshift gamma-ray burst hosts: to what extent do gamma-ray bursts trace star formation? , 2005, astro-ph/0505542.

[41]  Jia-Sheng Huang,et al.  Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.

[42]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[43]  Y. Yoshii,et al.  Hierarchical Formation of Galaxies with Dynamical Response to Supernova-Induced Gas Removal , 2004, astro-ph/0404485.

[44]  A. S. Fruchter,et al.  On the Lyalpha emission from gamma-ray burst host galaxies: Evidence for low metallicities , 2003, astro-ph/0306403.

[45]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[46]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[47]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[48]  S. Mereghetti,et al.  Are the hosts of gamma-ray bursts sub-luminous and blue galaxies? , 2003, astro-ph/0301149.

[49]  D. Schaerer The transition from Population III to normal galaxies: Lyα and He II emission and the ionising properties of high redshift starburst galaxies , 2002, astro-ph/0210462.

[50]  D. Schaerer,et al.  Database of Geneva stellar evolution tracks and isochrones for (UBV) J (RI) C JHKLL'M, HST-WFPC2, Geneva and Washington photometric systems , 2000, astro-ph/0011497.

[51]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[52]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[53]  S. M. Fall,et al.  Lyman-Alpha Emission from Galaxies , 1993 .

[54]  D. Neufeld The Escape of Lyman-Alpha Radiation from a Multiphase Interstellar Medium , 1991 .

[55]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[56]  G. Ferland,et al.  Application of line transfer calculations to active nuclei and novae , 1979 .