On the justification and extension of mixed models in LES

A reformulation of the large eddy simulation (LES) equations is presented, based on an alternative decomposition of the subgrid stress tensor leading to modified Leonard, cross, and Reynolds terms, which are all individually frame indifferent. The new Leonard tensor, identical to the scale similarity model proposed by Bardina et al(J. Bardina, J. H. Ferziger and W. C. Reynolds, 1980, AIAA Paper 80-1357), is computable and thus becomes an integral part of the LES equations, so this formulation clearly emphasizes the difference between Reynolds averaged Navier–Stokes (RANS) and LES. The remaining modified cross and Reynolds terms can be regrouped further into a reconstructable part and a true subgrid component, where we here use an approximate deconvolution model and a subgrid viscosity model for the respective parts. This structure justifies the use of a dissipative model term in mixed models based on, e.g., the scale similarity model. The reformulated LES model is tested on two basic flows, the Taylor Gre...

[1]  Christer Fureby,et al.  On Flux-Limiting-Based Implicit Large Eddy Simulation , 2007 .

[2]  P. H. Cittert Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien. II , 1930 .

[3]  B. Geurts,et al.  Realizability conditions for the turbulent stress tensor in large-eddy simulation , 1994, Journal of Fluid Mechanics.

[4]  M. Brachet Direct simulation of three-dimensional turbulence in the Taylor–Green vortex , 1991 .

[5]  Jean-Luc Guermond,et al.  Mathematical Perspectives on Large Eddy Simulation Models for Turbulent Flows , 2004 .

[6]  M. Lesieur,et al.  Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate , 1996, Journal of Fluid Mechanics.

[7]  J. Deardorff,et al.  The Use of Subgrid Transport Equations in a Three-Dimensional Model of Atmospheric Turbulence , 1973 .

[8]  A. Gosman,et al.  A comparative study of subgrid scale models in homogeneous isotropic turbulence , 1997 .

[9]  Wei Liu,et al.  Energy transfer in numerically simulated wall‐bounded turbulent flows , 1994 .

[10]  Christer Fureby,et al.  On LES and DES of Wall Bounded Flows , 2007 .

[11]  R. Friedrich,et al.  On Direct and Large Eddy Simulation of Turbulence , 1986 .

[12]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[13]  E. Novikov,et al.  Parameterization of subgrid-scale stress by the velocity gradient tensor , 1993 .

[14]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[15]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[16]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[17]  C. Meneveau,et al.  On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet , 1994, Journal of Fluid Mechanics.

[18]  U. Schumann Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli , 1975 .

[19]  Charles Meneveau,et al.  Subgrid-scale stresses and their modelling in a turbulent plane wake , 1997, Journal of Fluid Mechanics.

[20]  C. Meneveau,et al.  Evolution and modelling of subgrid scales during rapid straining of turbulence , 1999, Journal of Fluid Mechanics.

[21]  Leif Persson,et al.  On large eddy simulation of high Reynolds number wall bounded flows , 2004 .

[22]  Kiyosi Horiuti The role of the Bardina model in large eddy simulation of turbulent channel flow , 1989 .

[23]  Wei Liu,et al.  An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence , 1993 .

[24]  Rickard Bensow,et al.  Numerical investigation of the flow over an axisymmetric hill using LES, DES, and RANS , 2006 .

[25]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[26]  J. Ferziger,et al.  Evaluation of subgrid-scale models using an accurately simulated turbulent flow , 1979, Journal of Fluid Mechanics.

[27]  D. Pullin,et al.  A vortex-based subgrid stress model for large-eddy simulation , 1997 .

[28]  K. Horiuti Backward Scatter of Subgrid-Scale Energy in Wall-Bounded and Free Shear Turbulence , 1997 .

[29]  C. Fureby,et al.  Mathematical and Physical Constraints on Large-Eddy Simulations , 1997 .

[30]  Rickard Bensow,et al.  Vorticity–strain residual‐based turbulence modelling of the Taylor–Green vortex , 2007 .

[31]  C. G. Speziale Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence , 1985, Journal of Fluid Mechanics.

[32]  B. Launder,et al.  Mathematical Models of turbulence , 1972 .

[33]  J. P. Boris,et al.  New insights into large eddy simulation , 1992 .

[34]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[35]  Elias Balaras,et al.  Scale-Similar Models for Large-Eddy Simulations , 1999 .

[36]  S. Menon,et al.  AN UNSTEADY INCOMPRESSIBLE NAVIER-STOKES SOLVER FOR LARGE EDDY SIMULATION OF TURBULENT FLOWS , 1999 .

[37]  J. Domaradzki,et al.  The subgrid-scale estimation model in the physical space representation , 1999 .

[38]  N. Adams,et al.  An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows , 2001 .

[39]  Suresh Menon,et al.  Two Level Simulation of High-Reynolds Number Nonhomogeneous Turbulent Flows , 2003 .

[40]  Christer Fureby,et al.  Simulation of transition and turbulence decay in the Taylor–Green vortex , 2007 .

[41]  A. Gosman,et al.  Solution of the implicitly discretised reacting flow equations by operator-splitting , 1986 .

[42]  G. F. Smith On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors , 1971 .

[43]  W. Layton Analysis of a Scale-Similarity Model of the Motion of Large Eddies in Turbulent Flows☆☆☆ , 2001 .

[44]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[45]  W. Willmarth,et al.  Reynolds-number effects on the structure of a turbulent channel flow , 1989, Journal of Fluid Mechanics.

[46]  M. Germano A proposal for a redefinition of the turbulent stresses in the filtered Navier–Stokes equations , 1986 .

[47]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[48]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .