Deep neural network as deep feature learner

[1]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[2]  Zhou Su,et al.  What Videos Are Similar with You?: Learning a Common Attributed Representation for Video Recommendation , 2014, ACM Multimedia.

[3]  Larry S. Davis,et al.  Image ranking and retrieval based on multi-attribute queries , 2011, CVPR 2011.

[4]  Hong Hui Zheng,et al.  A Normalized Light CNN for Face Recognition , 2018, Journal of Physics: Conference Series.

[5]  Olivier Chapelle,et al.  Training a Support Vector Machine in the Primal , 2007, Neural Computation.

[6]  Saeid Homayouni,et al.  Object-based classification of hyperspectral data using Random Forest algorithm , 2018, Geo spatial Inf. Sci..

[7]  Shuicheng Yan,et al.  Attribute feedback , 2012, ACM Multimedia.

[8]  Yi Wang,et al.  Multi-Task Deep Relative Attribute Learning for Visual Urban Perception , 2020, IEEE Transactions on Image Processing.

[9]  Yang Song,et al.  Adapting deep RankNet for personalized search , 2014, WSDM.

[10]  Christoph H. Lampert,et al.  Attribute-Based Classification for Zero-Shot Visual Object Categorization , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Shiguang Shan,et al.  Relative Forest for Attribute Prediction , 2012, ACCV.

[12]  Qi Tian,et al.  Correlated attribute transfer with multi-task graph-guided fusion , 2012, ACM Multimedia.

[13]  Steve Branson,et al.  Efficient Large-Scale Structured Learning , 2013, CVPR.

[14]  Lei Guo,et al.  Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[16]  Ian Davidson,et al.  Learning Multiple Relative Attributes With Humans in the Loop , 2014, IEEE Transactions on Image Processing.

[17]  Bernard Ghanem,et al.  On the relationship between visual attributes and convolutional networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Junwei Han,et al.  Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Yong Jae Lee,et al.  Localizing and Visualizing Relative Attributes , 2017 .

[20]  Baoxin Li,et al.  Instructive Video Retrieval Based on Hybrid Ranking and Attribute Learning: A Case Study on Surgical Skill Training , 2014, ACM Multimedia.

[21]  Shuqiang Jiang,et al.  Multi-Scale Multi-View Deep Feature Aggregation for Food Recognition , 2020, IEEE Transactions on Image Processing.

[22]  Gang Wang,et al.  Multi-Task CNN Model for Attribute Prediction , 2015, IEEE Transactions on Multimedia.

[23]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[24]  Xinge You,et al.  Diverse Expected Gradient Active Learning for Relative Attributes , 2014, IEEE Transactions on Image Processing.

[25]  Lawrence D. Jackel,et al.  Handwritten Digit Recognition with a Back-Propagation Network , 1989, NIPS.

[26]  Xiaogang Wang,et al.  Deeply learned face representations are sparse, selective, and robust , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Yi Yang,et al.  Image Attribute Adaptation , 2014, IEEE Transactions on Multimedia.

[28]  Jonghyun Choi,et al.  Adding Unlabeled Samples to Categories by Learned Attributes , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Kristen Grauman,et al.  Fine-Grained Visual Comparisons with Local Learning , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Xiaogang Wang,et al.  Deep Learning Face Representation by Joint Identification-Verification , 2014, NIPS.

[32]  C. V. Jawahar,et al.  Relative Parts: Distinctive Parts for Learning Relative Attributes , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[34]  Kristen Grauman,et al.  Just Noticeable Differences in Visual Attributes , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[35]  Yen-Liang Lin Investigating 3D model and part information for improving content-based and attribute-based object retrieval , 2012, ACM Multimedia.

[36]  Kristen Grauman,et al.  Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[37]  Ji Wan,et al.  Deep Learning for Content-Based Image Retrieval: A Comprehensive Study , 2014, ACM Multimedia.

[38]  Adriana Kovashka,et al.  WhittleSearch: Image search with relative attribute feedback , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Edwin Lughofer,et al.  Neural network updating via argument Kalman filter for modeling of Takagi-Sugeno fuzzy models , 2018, J. Intell. Fuzzy Syst..

[40]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[41]  Jonathan Krause,et al.  Fine-Grained Crowdsourcing for Fine-Grained Recognition , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Roberto Cipolla,et al.  DEEP-CARVING: Discovering visual attributes by carving deep neural nets , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Ali Farhadi,et al.  Attribute-centric recognition for cross-category generalization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[45]  José de Jesús Rubio,et al.  SOFMLS: Online Self-Organizing Fuzzy Modified Least-Squares Network , 2009, IEEE Transactions on Fuzzy Systems.

[46]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Cyrus Rashtchian,et al.  Every Picture Tells a Story: Generating Sentences from Images , 2010, ECCV.

[48]  Trevor Darrell,et al.  PANDA: Pose Aligned Networks for Deep Attribute Modeling , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Liang Tao,et al.  Fine-Grained Visual Comparison Based on Relative Attribute Quadratic Discriminant Analysis , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[50]  Mingze Li,et al.  Forest type identification by random forest classification combined with SPOT and multitemporal SAR data , 2017, Journal of Forestry Research.

[51]  M. Shamim Hossain,et al.  Deep Relative Attributes , 2016, IEEE Transactions on Multimedia.

[52]  Xiaogang Wang,et al.  Deep Learning Face Representation from Predicting 10,000 Classes , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Kristen Grauman,et al.  Decorrelating Semantic Visual Attributes by Resisting the Urge to Share , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Daniel Tretter,et al.  Personal Clothing Retrieval on Photo Collections by Color and Attributes , 2013, IEEE Transactions on Multimedia.

[55]  Xiaochun Cao,et al.  Augmented Image Retrieval using Multi-order Object Layout with Attributes , 2014, ACM Multimedia.

[56]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[57]  Shuicheng Yan,et al.  Deep Search with Attribute-aware Deep Network , 2014, ACM Multimedia.

[58]  Yan-Ying Chen,et al.  Scalable Face Image Retrieval Using Attribute-Enhanced Sparse Codewords , 2013, IEEE Transactions on Multimedia.

[59]  Qi Tian,et al.  Attribute-assisted reranking for web image retrieval , 2012, ACM Multimedia.

[60]  Qiang Chen,et al.  Cross-Domain Image Retrieval with a Dual Attribute-Aware Ranking Network , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[61]  Kun Duan,et al.  Discovering localized attributes for fine-grained recognition , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[62]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[63]  José de Jesús Rubio,et al.  ANFIS system for classification of brain signals , 2019, J. Intell. Fuzzy Syst..

[64]  Adriana Kovashka,et al.  Attribute Adaptation for Personalized Image Search , 2013, 2013 IEEE International Conference on Computer Vision.

[65]  Peter N. Belhumeur,et al.  POOF: Part-Based One-vs.-One Features for Fine-Grained Categorization, Face Verification, and Attribute Estimation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[66]  Adriana Kovashka,et al.  Attribute Pivots for Guiding Relevance Feedback in Image Search , 2013, 2013 IEEE International Conference on Computer Vision.

[67]  Radford M. Neal Connectionist Learning of Belief Networks , 1992, Artif. Intell..

[68]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[69]  Xiaogang Wang,et al.  DeepID3: Face Recognition with Very Deep Neural Networks , 2015, ArXiv.

[70]  Francisco Chiclana,et al.  Dynamic structural neural network , 2018, J. Intell. Fuzzy Syst..

[71]  Feng Wu,et al.  Background Prior-Based Salient Object Detection via Deep Reconstruction Residual , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[72]  Yue Gao,et al.  Attribute-augmented semantic hierarchy: towards bridging semantic gap and intention gap in image retrieval , 2013, ACM Multimedia.