Incremental Program Obfuscation

Recent advances in program obfuscation suggest that it is possible to create software that can provably safeguard secret information. However, software systems usually contain large executable code that is updated multiple times and sometimes very frequently. Freshly obfuscating the program for every small update will lead to a considerable efficiency loss. Thus, an extremely desirable property for obfuscation algorithms is incrementality: small changes to the underlying program translate into small changes to the corresponding obfuscated program.

[1]  Allison Bishop,et al.  Indistinguishability Obfuscation for Turing Machines with Unbounded Memory , 2015, IACR Cryptol. ePrint Arch..

[2]  Amit Sahai,et al.  Obfuscation-Based Non-black-box Simulation and Four Message Concurrent Zero Knowledge for NP , 2015, TCC.

[3]  Rafail Ostrovsky,et al.  Efficient computation on oblivious RAMs , 1990, STOC '90.

[4]  Mihir Bellare,et al.  A New Paradigm for Collision-Free Hashing: Incrementality at Reduced Cost , 1997, EUROCRYPT.

[5]  Ran Canetti,et al.  Obfuscation of Hyperplane Membership , 2010, TCC.

[6]  Guy N. Rothblum,et al.  Virtual Black-Box Obfuscation for All Circuits via Generic Graded Encoding , 2014, TCC.

[7]  Yael Tauman Kalai,et al.  Program Obfuscation with Leaky Hardware , 2011, IACR Cryptol. ePrint Arch..

[8]  Moni Naor,et al.  Public-key cryptosystems provably secure against chosen ciphertext attacks , 1990, STOC '90.

[9]  Nir Bitansky,et al.  Perfect Structure on the Edge of Chaos , 2015, IACR Cryptol. ePrint Arch..

[10]  Yael Tauman Kalai,et al.  The Impossibility of Obfuscation with Auxiliary Input or a Universal Simulator , 2014, CRYPTO.

[11]  Yuval Ishai,et al.  Founding Cryptography on Tamper-Proof Hardware Tokens , 2010, IACR Cryptol. ePrint Arch..

[12]  Craig Gentry,et al.  Candidate Multilinear Maps from Ideal Lattices , 2013, EUROCRYPT.

[13]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2012, JACM.

[14]  Jonathan Katz,et al.  Incremental Unforgeable Encryption , 2001, FSE.

[15]  Nir Bitansky,et al.  Succinct Randomized Encodings and their Applications , 2015, IACR Cryptol. ePrint Arch..

[16]  Yael Tauman Kalai,et al.  On the impossibility of obfuscation with auxiliary input , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[17]  Marc Fischlin Incremental Cryptography and Memory Checkers , 1997, EUROCRYPT.

[18]  Claudio Orlandi,et al.  Obfuscation ==> (IND-CPA Security =/=> Circular Security) , 2013, IACR Cryptol. ePrint Arch..

[19]  Manuel Blum,et al.  Non-interactive zero-knowledge and its applications , 1988, STOC '88.

[20]  Rafael Pass,et al.  Limits of Extractability Assumptions with Distributional Auxiliary Input , 2015, ASIACRYPT.

[21]  Craig Gentry,et al.  On the Implausibility of Differing-Inputs Obfuscation and Extractable Witness Encryption with Auxiliary Input , 2014, CRYPTO.

[22]  Oded Goldreich,et al.  Towards a theory of software protection and simulation by oblivious RAMs , 1987, STOC.

[23]  Adi Shamir,et al.  Multiple NonInteractive Zero Knowledge Proofs Under General Assumptions , 1999, SIAM J. Comput..

[24]  Traian Muntean,et al.  Towards fully incremental cryptographic schemes , 2013, ASIA CCS '13.

[25]  Nir Bitansky,et al.  ZAPs and Non-Interactive Witness Indistinguishability from Indistinguishability Obfuscation , 2015, TCC.

[26]  Brent Waters,et al.  New Realizations of Somewhere Statistically Binding Hashing and Positional Accumulators , 2015, ASIACRYPT.

[27]  Mihir Bellare,et al.  Incremental cryptography and application to virus protection , 1995, STOC '95.

[28]  Satoshi Hada,et al.  Secure Obfuscation for Encrypted Signatures , 2010, EUROCRYPT.

[29]  B. Applebaum Cryptography in NC0 , 2014 .

[30]  Hoeteck Wee,et al.  On obfuscating point functions , 2005, STOC '05.

[31]  Kai-Min Chung,et al.  Statistically-secure ORAM with Õ(log2 n) Overhead , 2014, ASIACRYPT.

[32]  Kai-Min Chung,et al.  Oblivious Parallel RAM , 2014, IACR Cryptol. ePrint Arch..

[33]  Yuval Ishai,et al.  Public-Coin Differing-Inputs Obfuscation and Its Applications , 2015, TCC.

[34]  Amit Sahai,et al.  Patchable Obfuscation , 2015, IACR Cryptol. ePrint Arch..

[35]  Mark Zhandry,et al.  Multiparty Key Exchange, Efficient Traitor Tracing, and More from Indistinguishability Obfuscation , 2014, CRYPTO.

[36]  Yael Tauman Kalai,et al.  Protecting Obfuscation against Algebraic Attacks , 2014, EUROCRYPT.

[37]  Ran Canetti,et al.  Indistinguishability Obfuscation of Iterated Circuits and RAM Programs , 2014, IACR Cryptol. ePrint Arch..

[38]  Brent Waters,et al.  Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[39]  Brent Waters,et al.  Functional Encryption: Definitions and Challenges , 2011, TCC.

[40]  ApplebaumBenny,et al.  Cryptography in $NC^0$ , 2006 .

[41]  Guy N. Rothblum,et al.  Obfuscating Conjunctions , 2015, Journal of Cryptology.

[42]  Kai-Min Chung,et al.  Constant-Round Concurrent Zero-Knowledge from Indistinguishability Obfuscation , 2015, CRYPTO.

[43]  Elaine Shi,et al.  Path ORAM: an extremely simple oblivious RAM protocol , 2012, CCS.

[44]  Amit Sahai,et al.  Positive Results and Techniques for Obfuscation , 2004, EUROCRYPT.

[45]  Ran Canetti,et al.  Obfuscating Branching Programs Using Black-Box Pseudo-Free Groups , 2013, IACR Cryptol. ePrint Arch..

[46]  Mark Zhandry,et al.  Differing-Inputs Obfuscation and Applications , 2013, IACR Cryptol. ePrint Arch..

[47]  Benny Applebaum,et al.  Bootstrapping Obfuscators via Fast Pseudorandom Functions , 2014, ASIACRYPT.

[48]  Abhishek Jain,et al.  Indistinguishability Obfuscation from Compact Functional Encryption , 2015, CRYPTO.

[49]  Rafail Ostrovsky,et al.  Perfect Non-Interactive Zero Knowledge for NP , 2006, IACR Cryptol. ePrint Arch..

[50]  Ran Canetti,et al.  Towards Realizing Random Oracles: Hash Functions That Hide All Partial Information , 1997, CRYPTO.

[51]  Yael Tauman Kalai,et al.  Obfuscation for Evasive Functions , 2014, IACR Cryptol. ePrint Arch..

[52]  Elaine Shi,et al.  Oblivious RAM with O((logN)3) Worst-Case Cost , 2011, ASIACRYPT.

[53]  Manuel Blum,et al.  Non-Interactive Zero-Knowledge and Its Applications (Extended Abstract) , 1988, STOC 1988.

[54]  Rafail Ostrovsky,et al.  Software protection and simulation on oblivious RAMs , 1996, JACM.

[55]  Brent Waters,et al.  Replacing a Random Oracle: Full Domain Hash From Indistinguishability Obfuscation , 2014, IACR Cryptol. ePrint Arch..

[56]  Mihir Bellare,et al.  Incremental Cryptography: The Case of Hashing and Signing , 1994, CRYPTO.

[57]  Daniel Wichs,et al.  On the Communication Complexity of Secure Function Evaluation with Long Output , 2015, IACR Cryptol. ePrint Arch..

[58]  Moni Naor,et al.  One-Way Functions and (Im)Perfect Obfuscation , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[59]  Satoshi Hada,et al.  Zero-Knowledge and Code Obfuscation , 2000, ASIACRYPT.

[60]  Omer Reingold,et al.  Incremental Deterministic Public-Key Encryption , 2012, EUROCRYPT.

[61]  Daniele Micciancio,et al.  Oblivious data structures: applications to cryptography , 1997, STOC '97.

[62]  Brent Waters,et al.  How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..

[63]  Yael Tauman Kalai,et al.  On Virtual Grey Box Obfuscation for General Circuits , 2014, CRYPTO.

[64]  Marc Fischlin Lower bounds for the signature size of incremental schemes , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[65]  Adam O'Neill,et al.  Definitional Issues in Functional Encryption , 2010, IACR Cryptol. ePrint Arch..

[66]  Nir Bitansky,et al.  On Strong Simulation and Composable Point Obfuscation , 2010, CRYPTO.

[67]  Rafail Ostrovsky,et al.  Distributed Oblivious RAM for Secure Two-Party Computation , 2013, TCC.

[68]  Mihir Bellare,et al.  Point-Function Obfuscation: A Framework and Generic Constructions , 2015, TCC.

[69]  Nir Bitansky,et al.  Indistinguishability Obfuscation from Functional Encryption , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[70]  Amit Sahai,et al.  Functional Encryption for Turing Machines , 2016, TCC.

[71]  Elette Boyle On Extractability (a.k.a. Differing-Inputs) Obfuscation , 2014 .

[72]  Guy N. Rothblum,et al.  On Best-Possible Obfuscation , 2007, Journal of Cryptology.

[73]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2001, JACM.

[74]  Abhi Shelat,et al.  Securely Obfuscating Re-Encryption , 2007, Journal of Cryptology.

[75]  Zvika Brakerski,et al.  Obfuscating Circuits via Composite-Order Graded Encoding , 2015, TCC.

[76]  Yuval Ishai,et al.  Cryptography in NC0 , 2004, SIAM J. Comput..