Modulation of membrane function by cholesterol.

[1]  D. Zakim,et al.  Effects of cholesterol on the function and thermotropic properties of pure UDP-glucuronosyltransferase. , 1991, The Journal of biological chemistry.

[2]  K. Boesze-Battaglia,et al.  Cholesterol modulation of photoreceptor function in bovine retinal rod outer segments. , 1990, The Journal of biological chemistry.

[3]  M. Straume,et al.  Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. , 1990, Biochemistry.

[4]  B. Kanner,et al.  Cholesterol is required for the reconstruction of the sodium- and chloride-coupled, gamma-aminobutyric acid transporter from rat brain. , 1990, The Journal of biological chemistry.

[5]  P. Yeagle,et al.  Cholesterol dynamics in membranes. , 1990, Biophysical journal.

[6]  K. Philipson,et al.  Influence of sterols and phospholipids on sarcolemmal and sarcoplasmic reticular cation transporters. , 1989, The Journal of biological chemistry.

[7]  M. Straume,et al.  Equilibrium and dynamic bilayer structural properties of unsaturated acyl chain phosphatidylcholine-cholesterol-rhodopsin recombinant vesicles and rod outer segment disk membranes as determined from higher order analysis of fluorescence anisotropy decay. , 1988, Biochemistry.

[8]  D. Rice,et al.  Effects of cholesterol on sodium-potassium ATPase ATP hydrolyzing activity in bovine kidney , 1988 .

[9]  R. Dahiya,et al.  Cholesterol modulates alkaline phosphatase activity of rat intestinal microvillus membranes. , 1988, The Journal of biological chemistry.

[10]  A. Asano,et al.  Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): possible implication in the fusion reaction. , 1988, Biochemistry.

[11]  M. Straume,et al.  Influence of cholesterol on equilibrium and dynamic bilayer structure of unsaturated acyl chain phosphatidylcholine vesicles as determined from higher order analysis of fluorescence anisotropy decay. , 1987, Biochemistry.

[12]  M. Straume,et al.  Equilibrium and dynamic structure of large, unilamellar, unsaturated acyl chain phosphatidylcholine vesicles. Higher order analysis of 1,6-diphenyl-1,3,5-hexatriene and 1-[4-(trimethylammonio)phenyl]- 6-phenyl-1,3,5-hexatriene anisotropy decay. , 1987, Biochemistry.

[13]  S. Hui,et al.  The role of cholesterol in the activity of reconstituted Ca-ATPase vesicles containing unsaturated phosphatidylethanolamine. , 1986, The Journal of biological chemistry.

[14]  M. McNamee,et al.  Correlation between acetylcholine receptor function and structural properties of membranes. , 1986, Biochemistry.

[15]  P. Yeagle Cholesterol and the cell membrane. , 1985, Biochimica et biophysica acta.

[16]  N. Green,et al.  Amino-acid sequence of a Ca2+ + Mg2+ -dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence , 1985, Nature.

[17]  I. Björkhem,et al.  On the structural specificity in the regulation of the hydroxymethylglutaryl-CoA reductase and the cholesterol-7 alpha-hydroxylase in rats. Effects of cholestanol feeding. , 1985, Biochimica et biophysica acta.

[18]  G. Smutzer,et al.  A fluorescence anisotropy study on the phase behavior of dimyristoylphosphatidylcholine/cholesterol mixtures. , 1985, Biochimica et biophysica acta.

[19]  R. Reithmeier,et al.  Effect of cholesterol on phosphate uptake by human red blood cells , 1983, FEBS letters.

[20]  R. Krämer,et al.  Cholesterol as activator of ADP-ATP exchange in reconstituted liposomes and in mitochondria. , 1982, Biochimica et biophysica acta.

[21]  D. Schubert,et al.  Band 3 protein—cholesterol interactions in erythrocyte membranes , 1982, FEBS letters.

[22]  F. Barrantes,et al.  Effects of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. , 1982, Biochemistry.

[23]  A. Johannsson,et al.  Cholesterol in sarcoplasmic reticulum and the physiological significance of membrane fluidity. , 1981, The Biochemical journal.

[24]  P. Quinn,et al.  The modulation of Ca2+-ATPase activity of sarcoplasmic reticulum by membrane cholesterol. The effect of enzyme coupling. , 1981, Biochimica et biophysica acta.

[25]  M. Grunze,et al.  Dual effect of membrane cholesterol on simple and mediated transport processes in human erythrocytes. , 1980, Biochimica et biophysica acta.

[26]  K. Bloch,et al.  Sterols in membranes: growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol. , 1980, Biochemistry.

[27]  D. F. Silbert,et al.  Selective effects of membrane sterol depletion on surface function thymidine and 3-O-methyl-D-glucose transport in a sterol auxotroph. , 1979, The Journal of biological chemistry.

[28]  G. Feigenson,et al.  Fluorescence quenching of Ca2+‐ATPase in bilayer vesicles by a spin‐labeled phospholipid , 1978, FEBS letters.

[29]  T. E. Thompson,et al.  Studies on the anomalous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures. , 1978, Biochemistry.

[30]  D. Schubert,et al.  Band 3‐protein from human erythrocyte membranes strongly interacts with cholesterol , 1977, FEBS letters.

[31]  J. Seelig,et al.  Cholesterol-induced rod-like motion of fatty acyl chains in lipid bilayers a deuterium magnetic resonance study. , 1976, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[32]  I. Smith,et al.  A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes. , 1976, Chemistry and physics of lipids.

[33]  Ching-Hsien Huang Roles of carbonyl oxygens at the bilayer interface in phospholipid–sterol interaction , 1976, Nature.

[34]  M. Houslay,et al.  Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein , 1975, Nature.

[35]  M. Brown,et al.  Suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and inhibition of growth of human fibroblasts by 7-ketocholesterol. , 1974, The Journal of biological chemistry.

[36]  J. Seelig,et al.  The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. , 1974, Biochemistry.

[37]  A. Kandutsch,et al.  Inhibition of cell growth by oxygenated derivatives of cholesterol , 1974, Nature.

[38]  R. Demel,et al.  The effect of sterol structure on the permeability of lipomes to glucose, glycerol and Rb + . , 1972, Biochimica et biophysica acta.

[39]  K R Bruckdorfer,et al.  Structural requirements of sterols for the interaction with lecithin at the air water interface. , 1972, Biochimica et biophysica acta.

[40]  A A ANDREASEN,et al.  Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. , 1953, Journal of cellular and comparative physiology.

[41]  P. Yeagle,et al.  The membranes of cells , 1987 .

[42]  K. Wirtz,et al.  Hydroxymethylglutaryl CoA reductase and the modulation of microsomal cholesterol content by the nonspecific lipid transfer protein. , 1984, Journal of lipid research.

[43]  T. M. Devlin,et al.  A requirement for cholesterol and its structural features for a human macrophage‐like cell line , 1984, Journal of cellular biochemistry.

[44]  K. Bloch ON THE EVOLUTION OF A BIOSYNTHETIC PATHWAY , 1976 .