Temperature dependence of threshold current for coupled multiple quantum‐well In1−xGax P1−zAsz‐InP heterostructure laser diodes

Data are presented showing that the threshold current density, Jth (T)∝exp(T/T0), of multiple quantum‐well InGaPAs‐InP heterostructure laser diodes, grown by LPE, exhibits a two‐regime behavior similar to that of conventional InGaPAs‐InP double‐heterojunction lasers. At temperatures below a break‐point temperature characteristic of the quaternary alloy, Jth (T) of these multiple quantum‐well laser diodes is less temperature dependent (i.e., larger T0, as high as 150 °C) than that of regular quaternary DH lasers. At temperatures above the break‐point temperature, Jth (T) is dominated by a poorly understood competing temperature‐dependent nonradiative recombination process. In this range the T0 of these multiple quantum‐well diodes is similar to that of ordinary InGaPAs‐InP DH diodes but, because of the large number of layers and large lower‐temperature T0, is not apt to be caused by defects at heterointerfaces.

[1]  N. Kobayashi,et al.  1.5 µm InGaAsP/InP DH Laser with Optical Waveguide Structure , 1979 .

[2]  N. Holonyak,et al.  Phonon‐sideband MO‐CVD quantum‐well AlxGa1−xAs‐GaAs heterostructure laser , 1979 .

[3]  R. Nahory,et al.  Threshold dependence on active-layer thickness in InGaAsP/InP d.h. lasers , 1978 .

[4]  N. Holonyak,et al.  Limitations of the direct‐indirect transition on In1−xGaxP1−zAsz heterojunctions , 1977 .

[5]  D. Payne,et al.  Zero material dispersion in optical fibres , 1975 .

[6]  N. Holonyak,et al.  Phonon-assisted recombination and stimulated emission in multiple quantum-well Mo-CVD AlxGa1-xAs-GaAs heterostructures (Lz∽50Å, E1-1' -2× h̵ωLO⪅h̵ω , 1979 .

[7]  Y. Hamakawa,et al.  Observation of Deep Impurity Levels in In0.85GA0.15As0.39P0.61 , 1979 .

[8]  L. W. Cook,et al.  Auger profile study of the influence of lattice mismatch on the LPE InGaAsP-InP heterojunction interface , 1979 .

[9]  I. Hayashi,et al.  GaAs–AlxGa1−xAs Double Heterostructure Injection Lasers , 1971 .

[10]  G. E. Stillman,et al.  LPE In1−xGaxP1−zAsz (x∼0.12, z∼0.26) DH laser with multiple thin‐layer (<500 Å) active region , 1977 .

[11]  S. Akiba,et al.  10 000-h continuous CW operation of In1-xGaxAsyP1-yInP DH lasers at room temperature , 1979, IEEE Journal of Quantum Electronics.

[12]  S. W. Kirchoefer,et al.  Quantum-well Inp-Inl−xGaxPl−zAsz heterostructure lasers grown by liquid phase epitaxy (LPE) , 1980 .

[13]  G. Olsen,et al.  Low‐threshold 1.25‐μm vapor‐grown InGaAsP cw lasers , 1979 .

[14]  J. Hsieh Zn-diffused, stripe-geometry, double-heterostructure GaInAsP/InP diode lasers , 1979, IEEE Journal of Quantum Electronics.

[15]  Henry Kressel,et al.  The temperature dependence of threshold current for double‐heterojunction lasers , 1979 .

[16]  N. Holonyak,et al.  Phonon‐assisted recombination and stimulated emission in quantum‐well AlxGa1−xAs‐GaAs heterostructures , 1980 .

[17]  Y. Horikoshi,et al.  Temperature Sensitive Threshold Current of InGaAsP–InP Double Heterostructure Lasers , 1979 .

[18]  R. Nahory,et al.  Temperature dependence of InGaAsP double-heterostructure laser characteristics , 1979 .

[19]  S. W. Kirchoefer,et al.  Phonon‐assisted recombination in a multiple‐quantum‐well LPE InP‐In1−xGaxP1−zAsz heterostructure laser , 1979 .

[20]  Karl Hess,et al.  Temperature dependence of threshold current for quantum‐well AlxGa1−xAs‐GaAs heterostructure laser diodes , 1980 .

[21]  K. Iga,et al.  GaInAsP/InP DH lasers and related fabricating techniques for integration , 1979, IEEE Journal of Quantum Electronics.

[22]  J. J. Hsieh,et al.  1000-Hour Continuous CW Operation Of Double-Heterostructure GaInAsP/Inp Lasers , 1977 .

[23]  M. Adams Theoretical effects of exponential band tails on the properties of the injection laser , 1969 .

[24]  Frank Stern,et al.  Spontaneous and Stimulated Recombination Radiation in Semiconductors , 1964 .

[25]  M. Takusagawa,et al.  Theoretical and experimental study of threshold characteristics in InGaAsP/InP DH lasers , 1979 .

[26]  M. Kawashima,et al.  Low-Temperature Behavior of the Threshold Current and Carrier Lifetime of InGaAsP–InP DH Lasers , 1979 .

[27]  Joseph P. Donnelly,et al.  Room-Temperature Operation of GaInAsp/Inp Double-Heterostructure Diode Lasers Emitting at 1.1 µm* , 1976, Integrated Optics.

[28]  F. Stern Effect of Band Tails on Stimulated Emission of Light in Semiconductors , 1966 .

[29]  J. Pankove,et al.  Temperature dependence of emission efficiency and lasing threshold in laser diodes , 1968 .

[30]  Y. Suematsu,et al.  In 1-x Ga x As y P 1-y /InP DH lasers fabricated on InP , 1978 .

[31]  T. Miya,et al.  Ultimate low-loss single-mode fibre at 1.55 μm , 1979 .

[32]  Karl Hess,et al.  Temperature dependence of threshold current for a quantum-well heterostructure laser , 1980 .

[33]  N. Holonyak,et al.  Near-infrared In1-xGaxP1-zAszdouble-heterojunction lasers: Constant-temperature LPE growth and operation in an external-grating cavity , 1977 .

[34]  M. Horiguchi,et al.  Spectral losses of low-OH-content optical fibres , 1976 .