Rapid detection of a cocaine-binding aptamer using biological nanopores on a chip.

This paper describes a methodology for the rapid and highly selective detection of cocaine using a membrane protein channel combined with a DNA aptamer. The DNA aptamer recognizes the cocaine molecule with high selectivity. We successfully detected a low concentration of cocaine (300 ng/mL, the drug test cutoff limit) within 60 s using a biological nanopore embedded in a microchip.

[1]  Yi-Lun Ying,et al.  Monitoring of an ATP-binding aptamer and its conformational changes using an α-hemolysin nanopore. , 2011, Small.

[2]  Kelly C. Lee,et al.  Urine drug screening: practical guide for clinicians. , 2008, Mayo Clinic proceedings.

[3]  Li-Qun Gu,et al.  Encapsulating a single G-quadruplex aptamer in a protein nanocavity. , 2008, The journal of physical chemistry. B.

[4]  H. Bayley,et al.  Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. , 2005, Angewandte Chemie.

[5]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Milan N Stojanovic,et al.  Fluorescent Sensors Based on Aptamer Self-Assembly. , 2000, Journal of the American Chemical Society.

[7]  H. White,et al.  Nanopore detection of 8-oxo-7,8-dihydro-2'-deoxyguanosine in immobilized single-stranded DNA via adduct formation to the DNA damage site. , 2010, Journal of the American Chemical Society.

[8]  Jiwook Shim,et al.  Single molecule sensing by nanopores and nanopore devices. , 2010, The Analyst.

[9]  J. M. Scholtz,et al.  Interactions of peptides with a protein pore. , 2005, Biophysical journal.

[10]  Sean Conlan,et al.  Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter , 1999, Nature.

[11]  K. Rubinson,et al.  Single-molecule mass spectrometry in solution using a solitary nanopore , 2007, Proceedings of the National Academy of Sciences.

[12]  H. Bayley,et al.  Capture of a single molecule in a nanocavity. , 2001, Science.

[13]  M. Stojanović,et al.  Aptamer-based folding fluorescent sensor for cocaine. , 2001, Journal of the American Chemical Society.

[14]  Arica A Lubin,et al.  Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. , 2009, Journal of the American Chemical Society.

[15]  Yang Li,et al.  Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. , 2009, The Analyst.

[16]  S. Henrickson,et al.  Probing single nanometer-scale pores with polymeric molecular rulers. , 2010, The Journal of chemical physics.

[17]  S. Howorka,et al.  Sequence-specific detection of individual DNA strands using engineered nanopores , 2001, Nature Biotechnology.

[18]  D. Patel,et al.  Adaptive recognition by nucleic acid aptamers. , 2000, Science.

[19]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  H. Bayley,et al.  Stochastic Sensing with Protein Pores , 2000 .

[21]  J. T. Rodgers,et al.  Discrimination among individual Watson-Crick base pairs at the termini of single DNA hairpin molecules. , 2003, Nucleic acids research.

[22]  Shoji Takeuchi,et al.  A polymer-based nanopore-integrated microfluidic device for generating stable bilayer lipid membranes. , 2010, Small.

[23]  Ryuji Kawano,et al.  Controlling the translocation of single-stranded DNA through alpha-hemolysin ion channels using viscosity. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[24]  A. Meller,et al.  Nanopore unzipping of individual DNA hairpin molecules. , 2004, Biophysical journal.

[25]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[26]  A. Heeger,et al.  An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. , 2006, Journal of the American Chemical Society.

[27]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.