Resistant calcification responses of Arctica islandica clams under ocean acidification conditions

[1]  J. Ries,et al.  Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification , 2020, Science Advances.

[2]  N. Halliday,et al.  Effect of reduced pH on physiology and shell integrity of juvenile Haliotis iris (pāua) from New Zealand , 2019, PeerJ.

[3]  T. Brey,et al.  In situ Measurements of pH, CA2+, and Dic Dynamics within the Extrapallial Fluid of the Ocean Quahog Arctica islandica , 2019, Journal of Shellfish Research.

[4]  R. A. Mason,et al.  Decline in symbiont densities of tropical and subtropical scleractinian corals under ocean acidification , 2018, Coral Reefs.

[5]  T. Chopin,et al.  Ocean acidification and marine aquaculture in North America: potential impacts and mitigation strategies , 2017 .

[6]  C. Gobler,et al.  Transgenerational exposure of North Atlantic bivalves to ocean acidification renders offspring more vulnerable to low pH and additional stressors , 2017, Scientific Reports.

[7]  Anthony J. Giuffre,et al.  Amorphous calcium carbonate particles form coral skeletons , 2017, Proceedings of the National Academy of Sciences.

[8]  P. Falkowski,et al.  Biological control of aragonite formation in stony corals , 2017, Science.

[9]  A. Nederbragt,et al.  Annually resolved North Atlantic marine climate over the last millennium , 2016, Nature Communications.

[10]  Yaqing Chang,et al.  The impact of CO2-driven ocean acidification on early development and calcification in the sea urchin Strongylocentrotus intermedius. , 2016, Marine pollution bulletin.

[11]  K. Fabricius,et al.  Internal pH regulation facilitates in situ long-term acclimation of massive corals to end-of-century carbon dioxide conditions , 2016, Scientific Reports.

[12]  F. F. Pérèz,et al.  Ocean acidification in the subpolar North Atlantic: rates and mechanisms controlling pH changes , 2016 .

[13]  W. Ambrose,et al.  Linking large‐scale climate variability with Arctica islandica shell growth and geochemistry in northern Norway , 2016 .

[14]  R. Wanninkhof,et al.  Decadal acidification in the water masses of the Atlantic Ocean , 2015, Proceedings of the National Academy of Sciences.

[15]  Susan C. Fitzer,et al.  Ocean acidification impacts mussel control on biomineralisation , 2014, Scientific Reports.

[16]  S. Weiner,et al.  Biomineralization: mineral formation by organisms , 2014 .

[17]  B. Schöne Arctica islandica (Bivalvia): A unique paleoenvironmental archive of the northern North Atlantic Ocean , 2013 .

[18]  A. Eisenhauer,et al.  Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.) , 2013 .

[19]  G. Nehrke,et al.  Elevated CO2 Levels do not Affect the Shell Structure of the Bivalve Arctica islandica from the Western Baltic , 2013, PloS one.

[20]  Pauline M. Ross,et al.  Predicting the Response of Molluscs to the Impact of Ocean Acidification , 2013, Biology.

[21]  J. Scourse,et al.  Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica , 2013 .

[22]  F. F. Pérèz,et al.  Observed acidification trends in North Atlantic water masses , 2012 .

[23]  R. Feely,et al.  Extensive dissolution of live pteropods in the Southern Ocean , 2012 .

[24]  S. Dupont,et al.  Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification , 2012, Proceedings of the National Academy of Sciences.

[25]  Tong Zhang,et al.  CO2-Driven Ocean Acidification Alters and Weakens Integrity of the Calcareous Tubes Produced by the Serpulid Tubeworm, Hydroides elegans , 2012, PloS one.

[26]  Paolo Montagna,et al.  Coral resilience to ocean acidification and global warming through pH up-regulation , 2012 .

[27]  A. Wanamaker,et al.  Experimental validation of environmental controls on the δ13C of Arctica islandica (ocean quahog) shell carbonate , 2012 .

[28]  Stephen Barker,et al.  The Geological Record of Ocean Acidification , 2011, Science.

[29]  B. Morton The biology and functional morphology of Arctica islandica (Bivalvia: Arcticidae) – A gerontophilic living fossil , 2011 .

[30]  A. Körtzinger,et al.  Calcifying invertebrates succeed in a naturally CO 2 -rich coastal habitat but are threatened by high levels of future acidification , 2010 .

[31]  Mark A. Green,et al.  Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp. , 2010 .

[32]  Gerald G Singh,et al.  Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. , 2010, Ecology letters.

[33]  C. Gobler,et al.  Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish , 2010, Proceedings of the National Academy of Sciences.

[34]  E. Hendy,et al.  Physiological and isotopic responses of scleractinian corals to ocean acidification , 2010 .

[35]  T. Brey,et al.  Growth and Energy Budget Models of the Bivalve Arctica islandica at Six Different Sites in the Northeast Atlantic Realm , 2010 .

[36]  J. Spicer,et al.  Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution , 2010 .

[37]  S. Dupont,et al.  Impact of near-future ocean acidification on echinoderms , 2010, Ecotoxicology.

[38]  R. Feely,et al.  Direct observations of basin‐wide acidification of the North Pacific Ocean , 2010 .

[39]  J. Ries,et al.  Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification , 2009 .

[40]  G. Nehrke,et al.  Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry , 2009 .

[41]  C. Bryant,et al.  Continuous marine radiocarbon reservoir calibration and the 13C Suess effect in the Irish Sea: Results from the first multi-centennial shell-based marine master chronology , 2009 .

[42]  H. Kurihara Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates , 2008 .

[43]  R. Wirth,et al.  Nanostructure, composition and mechanisms of bivalve shell growth , 2008 .

[44]  O. Hoegh-Guldberg,et al.  Ocean acidification causes bleaching and productivity loss in coral reef builders , 2008, Proceedings of the National Academy of Sciences.

[45]  A. Freer,et al.  Biomineralization: elemental and organic influence in carbonate systems. , 2008, Chemical reviews.

[46]  J. Arias,et al.  Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. , 2008, Chemical reviews.

[47]  R. Feely,et al.  Evidence for Upwelling of Corrosive "Acidified" Water onto the Continental Shelf , 2008, Science.

[48]  F. Marin,et al.  Unusually Acidic Proteins in Biomineralization , 2008 .

[49]  J. Scourse,et al.  Very Long-Lived Mollusks Confirm 17th Century AD Tephra-Based Radiocarbon Reservoir Ages for North Icelandic Shelf Waters , 2008, Radiocarbon.

[50]  J. Laudien,et al.  SUITABILITY OF THREE STAINS TO MARK SHELLS OF CONCHOLEPAS CONCHOLEPAS (GASTROPODA) AND MESODESMA DONACIUM (BIVALVIA) , 2007 .

[51]  Ulf Riebesell,et al.  Species‐specific responses of calcifying algae to changing seawater carbonate chemistry , 2006 .

[52]  L. Jacobson,et al.  Fishery biology and biological reference points for management of ocean quahogs (Arctica islandica) off Iceland , 2005 .

[53]  S. Weiner,et al.  Choosing the Crystallization Path Less Traveled , 2005, Science.

[54]  R. Dunbar,et al.  Distribution of magnesium in coral skeleton , 2004 .

[55]  H. Pörtner,et al.  Biological Impact of Elevated Ocean CO2 Concentrations: Lessons from Animal Physiology and Earth History , 2004 .

[56]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[57]  R. Witbaard,et al.  Copepods link quahog growth to climate , 2003 .

[58]  Steve Weiner,et al.  Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization , 2003 .

[59]  S. Weiner,et al.  Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. , 2002, The Journal of experimental zoology.

[60]  Marie-Lise Schläppy,et al.  Validation of otolith growth-increment periodicity in tropical gobies , 2000 .

[61]  J. Weinberg,et al.  Phylogeography of the ocean quahog (Arctica islandica): influences of paleoclimate on genetic diversity and species range , 2000 .

[62]  C. McQuaid,et al.  Lethal and sub-lethal effects of phototrophic endoliths attacking the shell of the intertidal mussel Perna perna , 1999 .

[63]  Luca M. Cargnelli Essential fish habitat source document. Ocean quahog, Arctica islandica, life history and habitat characteristics , 1999 .

[64]  R. Witbaard Growth variations in Arctica islandica L. (Mollusca): a reflection of hydrography-related food supply , 1996 .

[65]  B. Rasmussen,et al.  Growth parameters of a benthic suspension feeder along a depth gradient across the pycnocline in the southern Kattegat, Denmark , 1995 .

[66]  R. Witbaard,et al.  Verification of annual growth increments in Arctica islandica L. from the North Sea by means of oxygen and carbon isotopes , 1994 .

[67]  C. Weidman,et al.  The long‐lived mollusc Arctica islandica: A new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of the northern North Atlantic Ocean , 1994 .

[68]  R. Witbaard,et al.  Long-term trends on the effects of the southern North Sea beamtrawl fishery on the bivalve mollusc Arctica islandica L. (Mollusca, bivalvia) , 1994 .

[69]  R. Berner,et al.  GEOCARB III : A REVISED MODEL OF ATMOSPHERIC CO 2 OVER PHANEROZOIC TIME , 2001 .

[70]  L. L. Stehlik,et al.  Diets of the Brachyuran Crabs Cancer Irroratus, C. Borealis, and Ovalipes Ocellatus in the New York Bight , 1993 .

[71]  D. Pauly,et al.  Arctica (Cyprina) islandica in Kiel Bay (Western Baltic) growth, production and ecological significance , 1990 .

[72]  Cindy Lee,et al.  Carbon cycling in coastal sediments: 1. A quantitative estimate of the remineralization of organic carbon in the sediments of Buzzards Bay, MA , 1988 .

[73]  R. Aller Carbonate Dissolution in Nearshore Terrigenous Muds: The Role of Physical and Biological Reworking , 1982, The Journal of Geology.

[74]  D. Jones,et al.  Advanced age for sexual maturity in the ocean quahog Arctica islandica (Mollusca: Bivalvia) , 1980 .