Non-Abelian BF theory for 2 + 1 dimensional topological states of matter

We present a field theoretical analysis of the 2+1 dimensional BF model with boundary in the Abelian and the non-Abelian case based on Symanzik's separability condition. Our aim is to characterize the low-energy properties of time reversal invariant topological insulators. In both cases, on the edges, we obtain Kaalgebras with opposite chiralities reflecting the time reversal invariance of the theory. While the Abelian case presents an apparent arbitrariness in the value of the central charge, the physics on the boundary of the non-Abelian theory is completely determined by time reversal and gauge symmetry. The discussion of the non-Abelian BF model shows that time reversal symmetry on the boundary implies the existence of counter- propagating chiral currents.

[1]  M. Ogilvie Phases of gauge theories , 2012, 1211.2843.

[2]  R. Britto Loop amplitudes in gauge theories: modern analytic approaches , 2010, 1012.4493.

[3]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[4]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[5]  S. Weinberg The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .

[6]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[7]  Renormalization and finiteness of topological BF theories , 1992, hep-th/9208047.

[8]  Kevin Walker,et al.  A class of P,T-invariant topological phases of interacting electrons , 2003, cond-mat/0307511.

[9]  D. Tsui,et al.  Nobel Lecture: Interplay of disorder and interaction in two-dimensional electron gas in intense magnetic fields , 1999 .

[10]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[11]  G. Cho,et al.  Topological BF field theory description of topological insulators , 2010, 1011.3485.

[12]  K. Symanzik SCHRODINGER REPRESENTATION AND CASIMIR EFFECT IN RENORMALIZABLE QUANTUM FIELD THEORY , 1981 .

[13]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[14]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[15]  X. Wen Topological Orders and Edge Excitations in FQH States , 1995 .

[16]  Michael Levin,et al.  Fractional topological insulators. , 2009, Physical review letters.

[17]  G. Moore,et al.  Taming the Conformal Zoo , 1989 .

[18]  Shou-Cheng Zhang,et al.  The Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect , 1992 .

[19]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[20]  C. Chamon,et al.  Time-reversal symmetric hierarchy of fractional incompressible liquids , 2011, 1108.2440.

[21]  N. Magnoli,et al.  Maxwell–Chern–Simons theory with a boundary , 2010, 1002.3227.

[22]  Edward Witten,et al.  Topological quantum field theory , 1988 .

[23]  Symanzik's method applied to fractional quantum Hall edge states , 2008, 0804.0164.

[24]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[25]  B Andrei Bernevig,et al.  Quantum spin Hall effect. , 2005, Physical review letters.

[26]  Xiao-Liang Qi,et al.  Nonlocal Transport in the Quantum Spin Hall State , 2009, Science.