High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics

[1]  Philip A. Romero,et al.  Dissecting enzyme function with microfluidic-based deep mutational scanning , 2015, Proceedings of the National Academy of Sciences.

[2]  Adam Sciambi,et al.  Accurate microfluidic sorting of droplets at 30 kHz. , 2015, Lab on a chip.

[3]  A. Griffiths,et al.  Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms. , 2014, Chemistry & biology.

[4]  Radivoje Prodanovic,et al.  A high-throughput cellulase screening system based on droplet microfluidics. , 2014, Biomicrofluidics.

[5]  Andrew D Griffiths,et al.  CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics. , 2014, The Analyst.

[6]  G. Stephanopoulos,et al.  Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption , 2014, Nature Biotechnology.

[7]  J. Nielsen,et al.  High-throughput screening for industrial enzyme production hosts by droplet microfluidics. , 2014, Lab on a chip.

[8]  S. Ladame,et al.  New glycosidase substrates for droplet-based microfluidic screening. , 2013, Analytical chemistry.

[9]  Xin Li,et al.  Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry. , 2013, Analytical chemistry.

[10]  K. Jefimovs,et al.  Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets. , 2013, Analytical chemistry.

[11]  L. Mazutis,et al.  Dynamics of molecular transport by surfactants in emulsions , 2012 .

[12]  Fabienne Courtois,et al.  Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. , 2012, Chemistry & biology.

[13]  H. Girault,et al.  Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry. , 2012, Lab on a chip.

[14]  Christoph A. Merten,et al.  Functional single-cell hybridoma screening using droplet-based microfluidics , 2012, Proceedings of the National Academy of Sciences.

[15]  D. Weitz,et al.  Droplet microfluidics for high-throughput biological assays. , 2012, Lab on a chip.

[16]  G. Yvert,et al.  Monitoring single-cell bioenergetics via the coarsening of emulsion droplets , 2012, Proceedings of the National Academy of Sciences.

[17]  Sung Jae Kim,et al.  Enhancing protease activity assay in droplet-based microfluidics using a biomolecule concentrator. , 2011, Journal of the American Chemical Society.

[18]  Haakan N Joensson,et al.  Droplet size based separation by deterministic lateral displacement-separating droplets by cell--induced shrinking. , 2011, Lab on a chip.

[19]  Nicole Chow,et al.  Flow cytometric sorting of the filamentous fungus Trichoderma reesei for improved strains , 2010 .

[20]  Vera Meyer,et al.  Aspergillus as a multi-purpose cell factory: current status and perspectives , 2010, Biotechnology Letters.

[21]  A. Abate,et al.  High-throughput injection with microfluidics using picoinjectors , 2010, Proceedings of the National Academy of Sciences.

[22]  A. Theberge,et al.  Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. , 2010, Angewandte Chemie.

[23]  A. Abate,et al.  Ultrahigh-throughput screening in drop-based microfluidics for directed evolution , 2010, Proceedings of the National Academy of Sciences.

[24]  E. Record,et al.  Technical advance in fungal biotechnology: development of a miniaturized culture method and an automated high‐throughput screening , 2009, Letters in applied microbiology.

[25]  N. Gow,et al.  Mechanisms of hypha orientation of fungi , 2009, Current opinion in microbiology.

[26]  D. Weitz,et al.  Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. , 2009, Lab on a chip.

[27]  Andrew D Griffiths,et al.  Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. , 2009, Analytical chemistry.

[28]  D. Weitz,et al.  Dropspots: a picoliter array in a microfluidic device. , 2009, Lab on a chip.

[29]  J. S. Johnson,et al.  Biocompatible surfactants for water-in-fluorocarbon emulsions. , 2008, Lab on a chip.

[30]  Christoph A. Merten,et al.  Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. , 2008, Chemistry & biology.

[31]  Vera Meyer,et al.  Genetic engineering of filamentous fungi--progress, obstacles and future trends. , 2008, Biotechnology advances.

[32]  Michael Eisenstein,et al.  Cell sorting: Divide and conquer , 2006, Nature.

[33]  R. Westervelt,et al.  Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices , 2006 .

[34]  Kevin D Dorfman,et al.  Droplet fusion by alternating current (AC) field electrocoalescence in microchannels , 2005, Electrophoresis.

[35]  H. Shapiro Practical Flow Cytometry: Shapiro/Flow Cytometry 4e , 2005 .

[36]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[37]  Ana Conesa,et al.  Filamentous fungi as cell factories for heterologous protein production. , 2002, Trends in biotechnology.

[38]  G. Robson,et al.  A study of the protein secretory pathway of Aspergillus niger using a glucoamylase-GFP fusion protein. , 2001, Fungal genetics and biology : FG & B.

[39]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .

[40]  K. Lowe,et al.  Perfluorochemicals: their applications and benefits to cell culture. , 1998, Trends in biotechnology.

[41]  P. Wipf,et al.  Fluorous Synthesis: A Fluorous-Phase Strategy for Improving Separation Efficiency in Organic Synthesis , 1997, Science.

[42]  Kelvin H. Lee,et al.  Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. , 1996, Biotechnology and bioengineering.

[43]  J. Sherwood,et al.  Breakup of fluid droplets in electric and magnetic fields , 1988, Journal of Fluid Mechanics.

[44]  Jay D Keasling,et al.  Developing Aspergillus as a host for heterologous expression. , 2009, Biotechnology advances.