More efficient soft decoding of the Golay codes

An algorithm for maximum-likelihood soft-decision decoding of the binary (24,12,8) Golay code is presented. The algorithm involves projecting the codewords of the binary Golay code onto the codewords of the (6,3,4) code over GF(4)-the hexacode. The complexity of the proposed algorithm is at most 651 real operations. Along similar lines, the tetracode may be employed for decoding the ternary (12,6,6) Golay code with only 530 real operations. The proposed algorithm also implies a reduction in the number of computations required for decoding the Leech lattice. >

[1]  V. Pless On the uniqueness of the Golay codes , 1968 .

[2]  N. J. A. Sloane,et al.  New trellis codes based on lattices and cosets , 1987, IEEE Trans. Inf. Theory.

[3]  Yair Be'ery,et al.  Fast decoding of the Leech lattice , 1989, IEEE J. Sel. Areas Commun..

[4]  Yair Be'ery,et al.  Optimal soft decision block decoders based on fast Hadamard transform , 1986, IEEE Trans. Inf. Theory.

[5]  Yair Be'ery,et al.  Maximum likelihood soft decoding of binary block codes and decoders for the Golay codes , 1989, IEEE Trans. Inf. Theory.

[6]  G. David Forney,et al.  A bounded-distance decoding algorithm for the Leech lattice, with generalizations , 1989, IEEE Trans. Inf. Theory.

[7]  R. T. Curtis,et al.  A new combinatorial approach to M24 , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Richard A. Silverman,et al.  Coding for constant-data-rate systems , 1954, Trans. IRE Prof. Group Inf. Theory.

[9]  Vera Pless,et al.  Decoding the Golay codes , 1986, IEEE Trans. Inf. Theory.

[10]  N. J. A. Sloane,et al.  Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice , 1986, IEEE Trans. Inf. Theory.

[11]  Craig K. Rushforth,et al.  VLSI implementation of a maximum-likelihood decoder for the Golay (24, 12) code , 1988, IEEE J. Sel. Areas Commun..

[12]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.