Column Integrated Water Vapor and Aerosol Load Characterization with the New ZEN-R52 Radiometer

The study shows the first results of the column-integrated water vapor retrieved by the new ZEN-R52 radiometer. This new radiometer has been specifically designed to monitor aerosols and atmospheric water vapor with a high degree of autonomy and robustness in order to allow the expansion of the observations of these parameters to remote desert areas from ground-based platforms. The ZEN-R52 device shows substantial improvements compared to the previous ZEN-R41 prototype: a smaller field of view, an increased signal-to-noise ratio, better stray light rejection, and an additional channel (940 nm) for precipitable water vapor (PWV) retrieval. PWV is inferred from the ZEN-R52 Zenith Sky Radiance (ZSR) measurements using a lookup table (LUT) methodology. The improvement of the new ZEN-R52 in terms of ZSR was verified by means of a comparison with the ZEN-R41, and with the Aerosol Robotic Network (AERONET) Cimel CE318 (CE318-AERONET) at Izaña Observatory, a Global Atmosphere Watch (GAW) high mountain station (Tenerife, Canary Islands, Spain), over a 10-month period (August 2017 to June 2018). ZEN-R52 aerosol optical depth (AOD) was extracted by means of the ZEN–AOD–LUT method with an uncertainty of ±0.01 ± 0.13*AOD. ZEN-R52 PWV extracted using a new LUT technique was compared with quasi-simultaneous (±30 s) Fourier Transform Infrared (FTIR) spectrometer measurements as reference. A good agreement was found between the two instruments (PWV means a relative difference of 9.1% and an uncertainty of ±0.089 cm or ±0.036 + 0.061*PWV for PWV <1 cm). This comparison analysis was extended using two PWV datasets from the same CE318 reference instrument at Izaña Observatory: one obtained from AERONET (CE318-AERONET), and another one using a specific calibration of the 940-nm channel performed in this work at Izaña Atmospheric Research Center Observatory (CE318-IARC), which improves the PWV product.

[1]  Chengxing Zhai,et al.  An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations , 2015 .

[2]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[3]  J. Barnard,et al.  Comparison of columnar water-vapor measurements from solar transmittance methods. , 2001, Applied optics.

[4]  K. Trenberth,et al.  Observations: Surface and Atmospheric Climate Change , 2007 .

[5]  David D. Turner,et al.  The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals , 2013 .

[6]  Lixin Wu,et al.  Modes and Mechanisms of Global Water Vapor Variability over the Twentieth Century , 2013 .

[7]  Natalia Kouremeti,et al.  Water vapour retrieval using the Precision Solar Spectroradiometer , 2017 .

[8]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[9]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[10]  D. W. Deering,et al.  Atmospheric Correction and Calibration During Kurex-91 , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[11]  Holger Vömel,et al.  Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde , 2014 .

[12]  David N. Whiteman,et al.  Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements , 2009 .

[13]  Arve Kylling,et al.  The libRadtran software package for radiative transfer calculations (version 2.0.1) , 2015 .

[14]  Jasper R. Lewis,et al.  Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements , 2019, Atmospheric Measurement Techniques.

[15]  Zhizhao Liu,et al.  Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite , 2016 .

[16]  J. Baldasano,et al.  Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations , 2009 .

[17]  K. Moffett,et al.  Remote Sens , 2015 .

[18]  Menghua Wang,et al.  Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective , 2009 .

[19]  J. Schulz,et al.  Comparison of decadal global water vapor changes derived from independent satellite time series , 2014 .

[20]  Josef Gasteiger,et al.  Representative wavelengths absorption parameterization applied to satellite channels and spectral bands , 2014 .

[21]  Mattia Crespi,et al.  Precipitable water vapour content from ESR/SKYNET sun–sky radiometers: validation against GNSS/GPS and AERONET over three different sites in Europe , 2017 .

[22]  B. Soden,et al.  Atmospheric Warming and the Amplification of Precipitation Extremes , 2008, Science.

[23]  Xiangao Xia,et al.  Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013 , 2015 .

[24]  R. Green,et al.  Water vapor column abundance retrievals during FIFE , 1992 .

[25]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[26]  K. Stamnes,et al.  A new spherical model for computing the radiation field available for photolysis and heating at twilight , 1991 .

[27]  Victoria E. Cachorro,et al.  Precipitable water vapor characterization in the Gulf of Cadiz region (southwestern Spain) based on Sun photometer, GPS, and radiosonde data , 2010 .

[28]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[29]  F. Kasten,et al.  A new table and approximation formula for the relative optial air mass , 1964 .

[30]  K. Shine,et al.  Intergovernmental panel on climate change , 1996, Environmental science and pollution research international.

[31]  Thomas Carlund,et al.  Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements , 2017 .

[32]  T. Eck,et al.  Sun photometric measurements of atmospheric water vapor column abundance in the 940‐nm band , 1997 .

[33]  Sara Basart,et al.  Izaña Atmospheric Research Center. Activity Report 2017-2018 , 2015 .

[34]  David G. Vass,et al.  Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE) , 1997 .

[35]  Alexander Smirnov,et al.  Columnar water vapor retrievals from multifilter rotating shadowband radiometer data , 2009 .

[36]  H. Bovensmann,et al.  Analysis of global water vapour trends from satellite measurements in the visible spectral range , 2007 .

[37]  Emilio Cuevas,et al.  Quantification of ozone reductions within the Saharan air layer through a 13-year climatologic analysis of ozone profiles , 2014 .

[38]  J. Gröbner,et al.  Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005–2015) 1 min synchronous measurements , 2019, Atmospheric Measurement Techniques.

[39]  Victoria E. Cachorro,et al.  A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring , 2016 .

[40]  Matthias Schneider,et al.  Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92 , 2010 .

[41]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[42]  Yu Zheng,et al.  Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China , 2017 .

[43]  V. Cachorro,et al.  Determination of the Atmospheric-Water-Vapor Content in the 940-nm Absorption Band by Use of Moderate Spectral-Resolution Measurements of Direct Solar Irradiance. , 1998, Applied optics.

[44]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[45]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[46]  Bernhard Mayer,et al.  Atmospheric Chemistry and Physics Technical Note: the Libradtran Software Package for Radiative Transfer Calculations – Description and Examples of Use , 2022 .

[47]  Rolf Müller,et al.  Comparison of Fast In situ Stratospheric Hygrometer (FISH) measurements of water vapor in the upper troposphere and lower stratosphere (UTLS) with ECMWF (re)analysis data , 2014 .

[48]  Raisa Lehtinen,et al.  Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site , 2015 .

[49]  Beat Schmid,et al.  Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94‐μm region , 1996 .

[50]  David Fuertes,et al.  Assessment of Sun photometer Langley calibration at the high-elevation sites Mauna Loa and Izaña , 2018, Atmospheric Chemistry and Physics.

[51]  J. Placeholder,et al.  Documentation for the 2014 TCCON Data Release , 2015 .

[52]  Alexander Smirnov,et al.  Evaluation of AERONET precipitable water vapor versus microwave radiometry, GPS, and radiosondes at ARM sites , 2014 .

[53]  Junhong Wang,et al.  A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements , 2007 .

[54]  Steffen Beirle,et al.  Global trends (1996–2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS‐2 and their relation to near‐surface temperature , 2006 .

[55]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[56]  James Walker,et al.  Technique for improving the calibration of large-area sphere sources , 1991, Defense, Security, and Sensing.

[57]  T. Eck,et al.  Assessment of Sun photometer Langley calibration at the high-elevation sites Mauna Loa and Izaña , 2018, Atmospheric Chemistry and Physics.

[58]  Lucas Alados-Arboledas,et al.  Retrievals of precipitable water vapor using star photometry: Assessment with Raman lidar and link to sun photometry , 2012 .