Abnormally enhanced diamagnetism in Al-Zn-Mg alloys

[1]  K. Matsuda,et al.  Effect of Copper Addition on the Cluster Formation Behavior of Al-Mg-Si, Al-Zn-Mg, and Al-Mg-Ge in the Natural Aging , 2018, Metallurgical and Materials Transactions A.

[2]  Katsumi Watanabe,et al.  Extra Electron Diffraction Spots Caused by Fine Precipitates Formed at the Early Stage of Aging in Al-Mg-X (X=Si, Ge, Zn)-Cu Alloys , 2017 .

[3]  P. Uggowitzer,et al.  Hardening of Al-Mg-Si alloys: Effect of trace elements and prolonged natural aging , 2016 .

[4]  K. Matsuda,et al.  Early Stage Clustering Behavior in Al-Mg-Si Alloys Observed via Time Dependent Magnetization , 2016 .

[5]  K. Matsuda,et al.  Time Dependent Magnetization of an Al-1.6%Mg2Si Alloy , 2015 .

[6]  J. Banhart,et al.  Early stages of solute clustering in an Al-Mg-Si alloy , 2015 .

[7]  W. Lefebvre,et al.  Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2 , 2013, Journal of Materials Science.

[8]  J. Banhart,et al.  Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy , 2010, 1006.4778.

[9]  P. Mascher,et al.  Study of the early stages of clustering in Al–Mg–Si alloys using the electrical resistivity measurements , 2009 .

[10]  S. Ringer,et al.  Positron lifetime evolution during room temperature ageing in Al-Zn-Mg-(Cu) , 2009 .

[11]  G. Barucca,et al.  Hardening nanostructures in an AlZnMg alloy , 2007 .

[12]  Z. Jagličić,et al.  Electrical, magnetic, thermal and thermoelectric properties of the bergman phase Mg32(Al,Zn)49 complex metallic alloy , 2007 .

[13]  A. Somoza,et al.  Studies of light alloys by positron annihilation techniques , 2004 .

[14]  Alfred Cerezo,et al.  Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050) , 2004 .

[15]  X. Z. Li,et al.  GP-zones in Al–Zn–Mg alloys and their role in artificial aging , 2001 .

[16]  T. Ida,et al.  Measurement of magnetic susceptibility of magnesium ultrafine particles , 1993 .

[17]  F. Plazaola,et al.  Study of formation and reversion of Guinier-Preston zones in Al-4.5 at%Zn-x at%Mg alloys by positrons , 1986 .

[18]  Katsumi Watanabe,et al.  Precipitation structure and mechanical properties on peak-aged Al-Zn-Mg alloys including different with some zn/mg ratios , 2017 .

[19]  Zheng Rui,et al.  First-Principles Research on the Electronic and Magnetic properties of MgZn2 Phase , 2015 .

[20]  B. Baroux,et al.  Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys , 2010 .

[21]  Y. Shirai Behavior of vacancies in aluminum watched by positrons , 2006 .

[22]  R. Ferragut,et al.  Positron-annihilation study of the aging kinetics of AlCu-based alloys. I. Al-Cu-Mg , 2000 .

[23]  J. E. Robinson,et al.  Magnetic Susceptibility of Zinc at Liquid Helium Temperatures , 1949 .