Covariance dynamics and entanglement in translation invariant linear quantum stochastic networks

This paper is concerned with a translation invariant network of identical quantum stochastic systems subjected to external quantum noise. Each node of the network is directly coupled to a finite number of its neighbours. This network is modelled as an open quantum harmonic oscillator and is governed by a set of linear quantum stochastic differential equations (QSDEs). The dynamic variables of the network satisfy the canonical commutation relations (CCRs). Similar large-scale networks can be found, for example, in quantum metamaterials and optical lattices. Using spatial Fourier transform techniques, we obtain a sufficient condition for stability of the network with a finite interaction range, and consider a mean square performance index for the stable network in the thermodynamic limit. In the case when the network consists of one-mode oscillators, the Peres-Horodecki-Simon separability criterion is employed in order to obtain sufficient and necessary conditions for quantum entanglement of bipartite systems of nodes in the Gaussian invariant state. The results on stability and entanglement are extended to the infinite chain of the linear quantum systems by letting the number of nodes go to infinity. A numerical example is provided to illustrate the results.

[1]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[2]  S. Ramakrishna,et al.  Physics of negative refractive index materials , 2005 .

[3]  Alexandre M. Zagoskin,et al.  Superconducting quantum metamaterials in 3D: possible realizations , 2012 .

[4]  M. Wolf,et al.  Bound entangled Gaussian states. , 2000, Physical review letters.

[5]  Alexandre M. Zagoskin,et al.  Quantum engineering , 2022, Physics Subject Headings (PhySH).

[6]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[7]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[8]  A. Serafini,et al.  Quantifying decoherence in continuous variable systems , 2005 .

[9]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[10]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[11]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[12]  K. R. Parthasarathy,et al.  WHAT IS A GAUSSIAN STATE , 2010 .

[13]  Fuzhen Zhang The Schur complement and its applications , 2005 .

[14]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[15]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[16]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[17]  Ian R. Petersen,et al.  Robust stability of uncertain quantum systems , 2012, 2012 American Control Conference (ACC).

[18]  C. Storey,et al.  Matrix methods in stability theory , 1972, The Mathematical Gazette.

[19]  Valery Shklover,et al.  Negative Refractive Index Materials , 2006 .

[20]  Nikolay I. Zheludev,et al.  A Roadmap for Metamaterials , 2011 .

[21]  Franco Nori,et al.  Quantum metamaterials: Electromagnetic waves in Josephson qubit lines , 2009 .

[22]  Katrin Baumgartner,et al.  Introduction To Complex Analysis In Several Variables , 2016 .

[23]  Masaya Notomi,et al.  Large-scale arrays of ultrahigh-Q coupled nanocavities , 2008 .

[24]  Andrew D Greentree,et al.  Reconfigurable quantum metamaterials. , 2010, Optics express.

[25]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[26]  V. P. Belavkin,et al.  Optimal Quantum Filtering and Quantum Feedback Control , 2005 .

[27]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[28]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[29]  Ian R. Petersen,et al.  Physical Realizability and Mean Square Performance of Translation Invariant Networks of Interacting Linear Quantum Stochastic Systems , 2014, ArXiv.

[30]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[31]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[32]  Ian R. Petersen,et al.  Robust mean square stability of open quantum stochastic systems with Hamiltonian perturbations in a Weyl quantization form , 2014, 2014 4th Australian Control Conference (AUCC).