Self-Dual Doubly Even $2$-Quasi-Cyclic Transitive Codes Are Asymptotically Good
暂无分享,去创建一个
[1] Patrick Solé,et al. Good self-dual quasi-cyclic codes exist , 2003, IEEE Trans. Inf. Theory.
[2] N. J. A. Sloane,et al. Good self dual codes exist , 1972, Discret. Math..
[3] Helmut Hasse. Über die Dichte der Primzahlenp, für die eine vorgegebene ganzrationale Zahla≠0 von gerader bzw. ungerader Ordnung mod.p ist , 1966 .
[4] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[5] Sanjoy K. Mitter,et al. Some randomized code constructions from group actions , 2006, IEEE Transactions on Information Theory.
[6] Jean-Pierre Serre. A Course in Arithmetic , 1973 .
[7] Henning Stichtenoth,et al. Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound , 2006, IEEE Transactions on Information Theory.
[8] Bikash Kumar Dey. On existence of good self-dual quasicyclic codes , 2004, IEEE Transactions on Information Theory.
[9] Wolfgang Willems,et al. Is the class of cyclic codes asymptotically good? , 2006, IEEE Transactions on Information Theory.
[10] Wolfgang Willems,et al. Self-dual codes and modules for finite groups in characteristic two , 2004, IEEE Transactions on Information Theory.
[11] Michio Suzuki,et al. Finite Groups II , 1986 .
[12] E. J. Weldon,et al. Some Results on Quasi-Cyclic Codes , 1969, Inf. Control..
[13] Tadao Kasami. A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2 (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[14] W. Cary Huffman,et al. Fundamentals of Error-Correcting Codes , 1975 .
[15] Gilles Zémor,et al. Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes , 2006, 2006 IEEE International Symposium on Information Theory.
[16] Henning Stichtenoth. Transitive and Self-dual Codes Attaining the Tsfasman-Vladut-Zink Bound , 2005 .