Self-Dual Doubly Even $2$-Quasi-Cyclic Transitive Codes Are Asymptotically Good

In this correspondence, we prove that the class of binary self-dual doubly even 2-quasi-cyclic transitive codes is asymptotically good. This improves a recent result of Bazzi and Mitter (IEEE Trans. Inf. Theory, vol. 52, pp. 3210-3219, 2006). The proof is based on the study of a particular class of codes invariant under dihedral groups using a blend of representation theory and probabilistic arguments. The methods are closely related to those used in Bazzi and Mitter. In order to complete the proof a number theoretical result of Hasse is needed.

[1]  Patrick Solé,et al.  Good self-dual quasi-cyclic codes exist , 2003, IEEE Trans. Inf. Theory.

[2]  N. J. A. Sloane,et al.  Good self dual codes exist , 1972, Discret. Math..

[3]  Helmut Hasse Über die Dichte der Primzahlenp, für die eine vorgegebene ganzrationale Zahla≠0 von gerader bzw. ungerader Ordnung mod.p ist , 1966 .

[4]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[5]  Sanjoy K. Mitter,et al.  Some randomized code constructions from group actions , 2006, IEEE Transactions on Information Theory.

[6]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[7]  Henning Stichtenoth,et al.  Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound , 2006, IEEE Transactions on Information Theory.

[8]  Bikash Kumar Dey On existence of good self-dual quasicyclic codes , 2004, IEEE Transactions on Information Theory.

[9]  Wolfgang Willems,et al.  Is the class of cyclic codes asymptotically good? , 2006, IEEE Transactions on Information Theory.

[10]  Wolfgang Willems,et al.  Self-dual codes and modules for finite groups in characteristic two , 2004, IEEE Transactions on Information Theory.

[11]  Michio Suzuki,et al.  Finite Groups II , 1986 .

[12]  E. J. Weldon,et al.  Some Results on Quasi-Cyclic Codes , 1969, Inf. Control..

[13]  Tadao Kasami A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2 (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[14]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[15]  Gilles Zémor,et al.  Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes , 2006, 2006 IEEE International Symposium on Information Theory.

[16]  Henning Stichtenoth Transitive and Self-dual Codes Attaining the Tsfasman-Vladut-Zink Bound , 2005 .