A strontium lattice clock with 3 × 10 − 17 ?> inaccuracy and its frequency

We have measured the absolute frequency of the optical lattice clock based on 87Sr at PTB with an uncertainty of 3.9 × 10−16 using two caesium fountain clocks. This is close to the accuracy of todayʼs best realizations of the SI second. The absolute frequency of the 5 s2 1S0 – 5s5p 3P0 transition in 87Sr is 429 228 004 229 873.13(17) Hz. Our result is in excellent agreement with recent measurements performed in different laboratories worldwide. We improved the total systematic uncertainty of our Sr frequency standard by a factor of five and reach 3 × 10−17, opening new prospects for frequency ratio measurements between optical clocks for fundamental research, geodesy or optical clock evaluation.

[1]  H. Inaba,et al.  Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer. , 2008, Optics letters.

[2]  C W Oates,et al.  Spin-1/2 optical lattice clock. , 2009, Physical review letters.

[3]  Rodolphe Le Targat,et al.  Accuracy evaluation of an optical lattice clock with bosonic atoms. , 2007, Optics letters.

[4]  Hidetoshi Katori,et al.  Optical Lattice Clocks with Non-Interacting Bosons and Fermions , 2008 .

[5]  Mizuhiko Hosokawa,et al.  Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement. , 2012, Optics express.

[6]  Tomonari Suzuyama,et al.  Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb , 2014, 1401.1008.

[7]  S. Bize,et al.  Cold collision frequency shifts in a 87Rb atomic fountain. , 2000, Physical review letters.

[8]  Charles W. Clark,et al.  Blackbody-radiation shift in the Sr optical atomic clock , 2012, 1210.7272.

[9]  Jon H. Shirley,et al.  NIST-F1: recent improvements and accuracy evaluations , 2005 .

[10]  R. Holzwarth,et al.  Einstein Gravity Explorer–a medium-class fundamental physics mission , 2009 .

[11]  Harald Schnatz,et al.  Providing $10^{-16}$ Short-Term Stability of a 1.5-$\mu\hbox{m}$ Laser to Optical Clocks , 2013, IEEE Transactions on Instrumentation and Measurement.

[12]  Tetsuya Ido,et al.  87Sr lattice clock with inaccuracy below 10 -15. , 2007, Physical review letters.

[13]  Sergey G. Porsev,et al.  Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks , 2006 .

[14]  K. Gibble,et al.  Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2 , 2011, 1110.2590.

[15]  J. Mitroy,et al.  Dispersion and polarization interactions of the strontium atom , 2010 .

[16]  S. Porsev,et al.  Erratum: Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks [Phys. Rev. A 74, 020502(R) (2006)] , 2012 .

[17]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[18]  R. Wynands,et al.  Uncertainty evaluation of the caesium fountain clock PTB-CSF2 , 2010 .

[19]  A. Bjerhammar,et al.  On a relativistic geodesy , 1985 .

[20]  Andreas Bauch,et al.  Uncertainty evaluation of the atomic caesium fountain CSF1 of the PTB , 2001 .

[21]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[22]  N. Hinkley,et al.  Determination of the 5d6s3D1 State Lifetime and Blackbody Radiation Clock Shift in Yb , 2012, 1208.0552.

[23]  Uwe Sterr,et al.  Delivering pulsed and phase stable light to atoms of an optical clock , 2012 .

[24]  A. Ludlow,et al.  Making optical atomic clocks more stable with 10-16-level laser stabilization , 2011, 1101.1351.

[25]  Uwe Sterr,et al.  High accuracy correction of blackbody radiation shift in an optical lattice clock. , 2012, Physical review letters.

[26]  F. Riehle,et al.  Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons. , 2009, Physical review letters.

[27]  Harald Schnatz,et al.  Calcium optical frequency standard with ultracold atoms: Approaching 10 -15 relative uncertainty , 2005 .

[28]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[29]  S. Falke,et al.  Long-range transport of ultracold atoms in a far-detuned one-dimensional optical lattice , 2012, 1204.3464.

[30]  Jun Ye,et al.  Sr Lattice Clock with Inaccuracy below 10 , 2007 .

[31]  M. Stock Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram , 2013 .

[32]  Marco Pizzocaro,et al.  An Atomic Clock with 10–¹⁸ Instability , 2013 .

[33]  D. Shahar,et al.  Measurement of a superconducting energy gap in a homogeneously amorphous insulator. , 2012, Physical review letters.

[34]  Zichao Zhou,et al.  88Sr+ 445-THz single-ion reference at the 10(-17) level via control and cancellation of systematic uncertainties and its measurement against the SI second. , 2012, Physical review letters.

[35]  P. Lemonde,et al.  Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[36]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[37]  Y. Li,et al.  Stability Transfer between Two Clock Lasers Operating at Different Wavelengths for Absolute Frequency Measurement of Clock Transition in 87Sr , 2012, 1201.3159.

[38]  P. Rosenbusch,et al.  Experimental realization of an optical second with strontium lattice clocks , 2013, Nature Communications.

[39]  J. Ye,et al.  Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s. , 2012, Physical review letters.

[40]  Harald Schnatz,et al.  Providing 10 -16 Short-Term Stability of a 1.5-µm Laser to Optical Clocks. , 2013 .

[41]  E. Peik,et al.  Cs-based optical frequency measurement using cross-linked optical and microwave oscillators , 2013, 1310.8190.

[42]  T Zelevinsky,et al.  New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. , 2008, Physical review letters.

[43]  J. Guéna,et al.  Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7×10(-15). , 2012, Physical review letters.

[44]  Tetsuya Ido,et al.  Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature. , 2003, Physical review letters.

[45]  Jun Ye,et al.  Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock , 2009, 0906.1419.

[46]  Ekkehard Peik,et al.  Fundamental constants and units and the search for temporal variations , 2010 .

[47]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[48]  P. Lemonde,et al.  Optical lattice clock with atoms confined in a shallow trap (8 pages) , 2005 .

[49]  Gesine Grosche,et al.  The Stability of an Optical Clock Laser Transferred to the Interrogation Oscillator for a Cs Fountain , 2008, IEEE Transactions on Instrumentation and Measurement.

[50]  A. Zenesini,et al.  Observation of photon-assisted tunneling in optical lattices. , 2007, Physical review letters.

[51]  N Ashby,et al.  Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance. , 2007, Physical review letters.

[52]  H. Schnatz,et al.  The 87Sr optical frequency standard at PTB , 2011, 1104.4850.

[53]  P. Rosenbusch,et al.  An optical lattice clock with spin-polarized 87Sr atoms , 2007, 0710.0086.

[54]  E. Burt,et al.  Lattice-induced frequency shifts in Sr optical lattice clocks at the 10(-17) level. , 2011, Physical review letters.

[55]  C. Clark,et al.  Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts. , 2012, Physical Review Letters.

[56]  D. Howe,et al.  The total deviation approach to long-term characterization of frequency stability , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[57]  Tomoya Akatsuka,et al.  Optical lattice clocks with non-interacting bosons and fermions , 2008, 2008 IEEE International Frequency Control Symposium.

[58]  Kurt Gibble Scattering of cold-atom coherences by hot atoms: frequency shifts from background-gas collisions. , 2013, Physical review letters.

[59]  Harald Schnatz,et al.  Reaching the quantum limit in a fountain clock using a microwave oscillator phase locked to an ultrastable laser , 2009 .

[60]  T. Wieting,et al.  Effects of surface condition on the infrared absorptivity of 304 stainless steel , 1979 .

[61]  M. Takamoto,et al.  Ultrastable optical clock with neutral atoms in an engineered light shift trap , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[62]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[63]  V. Yudin,et al.  Generalized Ramsey excitation scheme with suppressed light shift. , 2012, Physical review letters.

[64]  C W Oates,et al.  High-accuracy measurement of atomic polarizability in an optical lattice clock. , 2011, Physical review letters.

[65]  B Lipphardt,et al.  Limit on the present temporal variation of the fine structure constant. , 2004, Physical review letters.

[66]  M. Okhapkin,et al.  High-accuracy optical clock based on the octupole transition in 171Yb+. , 2011, Physical review letters.

[67]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[68]  Andreas Bauch,et al.  The Atomic Caesium Fountain CSF1 of Ptb , 2002 .

[69]  Ruoxin Li,et al.  Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts , 2011, 1107.2412.

[70]  Jun Ye,et al.  The absolute frequency of the 87Sr optical clock transition , 2008, 0804.4509.

[71]  J. Guéna,et al.  Progress in atomic fountains at LNE-SYRTE , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[72]  Fritz Riehle,et al.  Tackling the Blackbody Shift in a Strontium Optical Lattice Clock , 2010, IEEE Transactions on Instrumentation and Measurement.