Simplifying quantum double Hamiltonians using perturbative gadgets

Perturbative gadgets were originally introduced to generate effective k-local interactionsin the low-energy sector of a 2-local Hamiltonian. Extending this idea, we present gadgetswhich are specifically suited for realizing Hamiltonians exhibiting non-abelian anyonicexcitations. At the core of our construction is a perturbative analysis of a widely usedhopping-term Hamiltonian. We show that in the low-energy limit, this Hamiltonian canbe approximated by a certain ordered product of operators. In particular, this providesa simplified realization of Kitaev's quantum double Hamiltonians.

[1]  Carlos Mochon Anyon computers with smaller groups , 2004 .

[2]  C. Bloch,et al.  Sur la théorie des perturbations des états liés , 1958 .

[3]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[4]  M. Lukin,et al.  Controlling spin exchange interactions of ultracold atoms in optical lattices. , 2002, Physical review letters.

[5]  J. Biamonte Non−perturbative k−body to two−body commuting conversion Hamiltonians and embedding problem instances into Ising spins , 2008, 0801.3800.

[6]  S. Braunstein,et al.  Quantum computation , 1996 .

[7]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[8]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[9]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[10]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[11]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[12]  Barbara M. Terhal,et al.  The complexity of quantum spin systems on a two-dimensional square lattice , 2008, Quantum Inf. Comput..

[13]  J. Biamonte,et al.  Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.

[14]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[15]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[16]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[17]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[18]  E. Farhi,et al.  Perturbative gadgets at arbitrary orders , 2008, 0802.1874.

[19]  Carlos Mochon Anyons from nonsolvable finite groups are sufficient for universal quantum computation , 2003 .

[20]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.