Simplifying quantum double Hamiltonians using perturbative gadgets
暂无分享,去创建一个
[1] Carlos Mochon. Anyon computers with smaller groups , 2004 .
[2] C. Bloch,et al. Sur la théorie des perturbations des états liés , 1958 .
[3] M. Freedman,et al. Topological Quantum Computation , 2001, quant-ph/0101025.
[4] M. Lukin,et al. Controlling spin exchange interactions of ultracold atoms in optical lattices. , 2002, Physical review letters.
[5] J. Biamonte. Non−perturbative k−body to two−body commuting conversion Hamiltonians and embedding problem instances into Ising spins , 2008, 0801.3800.
[6] S. Braunstein,et al. Quantum computation , 1996 .
[7] P. Zoller,et al. A toolbox for lattice-spin models with polar molecules , 2006 .
[8] Xiao-Gang Wen,et al. String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.
[9] Mikhail N. Vyalyi,et al. Classical and Quantum Computation , 2002, Graduate studies in mathematics.
[10] N. Reshetikhin,et al. Quantum Groups , 1993, hep-th/9311069.
[11] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[12] Barbara M. Terhal,et al. The complexity of quantum spin systems on a two-dimensional square lattice , 2008, Quantum Inf. Comput..
[13] J. Biamonte,et al. Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.
[14] Julia Kempe,et al. The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.
[15] Ben Reichardt,et al. Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.
[16] Alexei Kitaev,et al. Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.
[17] L. Landau. Fault-tolerant quantum computation by anyons , 2003 .
[18] E. Farhi,et al. Perturbative gadgets at arbitrary orders , 2008, 0802.1874.
[19] Carlos Mochon. Anyons from nonsolvable finite groups are sufficient for universal quantum computation , 2003 .
[20] Peter W. Shor,et al. Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.