Tighter monogamy relations of quantum entanglement for multiqubit W-class states

Monogamy relations characterize the distributions of entanglement in multipartite systems. We investigate monogamy relations for multiqubit generalized W-class states. We present new analytical monogamy inequalities for the concurrence of assistance, which are shown to be tighter than the existing ones. Furthermore, analytical monogamy inequalities are obtained for the negativity of assistance.

[1]  Julio I. de Vicente,et al.  Lower bounds on concurrence and separability conditions , 2006, quant-ph/0611229.

[2]  H. Breuer Optimal entanglement criterion for mixed quantum states. , 2006, Physical review letters.

[3]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[4]  A. Uhlmann Fidelity and Concurrence of conjugated states , 1999, quant-ph/9909060.

[5]  S. Fei,et al.  A note on invariants and entanglements , 2001, quant-ph/0109073.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Heinz-Peter Breuer Separability criteria and bounds for entanglement measures , 2006 .

[8]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[10]  A. Winter,et al.  Monogamy of quantum entanglement and other correlations , 2003, quant-ph/0310037.

[11]  Xue-Na Zhu,et al.  Entanglement Monogamy Relations of Qubit Systems , 2014, 1409.1022.

[12]  Jeong San Kim,et al.  Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity , 2008, 0811.2047.

[13]  Jeong San Kim,et al.  Generalized W-class state and its monogamy relation , 2008, 0805.1690.

[14]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[15]  Guang-Can Guo,et al.  Optimal entanglement witnesses based on local orthogonal observables , 2007, 0705.1832.

[16]  Frank Verstraete,et al.  Local vs. joint measurements for the entanglement of assistance , 2003, Quantum Inf. Comput..

[17]  S. Fei,et al.  Concurrence of arbitrary dimensional bipartite quantum states. , 2005, Physical review letters.

[18]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[19]  J. Cirac,et al.  Distillability and partial transposition in bipartite systems , 1999, quant-ph/9910022.

[20]  Chang-shui Yu,et al.  Entanglement monogamy of tripartite quantum states , 2008, 0803.2954.

[21]  Xue-Na Zhu,et al.  General monogamy relations of quantum entanglement for multiqubit W-class states , 2017, Quantum Information Processing.

[22]  Jeong San Kim Strong monogamy of quantum entanglement for multi-qubit W-class states , 2014 .

[23]  Shao-Ming Fei,et al.  Tighter entanglement monogamy relations of qubit systems , 2017, Quantum Information Processing.

[24]  Marcin Pawlowski,et al.  Security proof for cryptographic protocols based only on the monogamy of Bell's inequality violations , 2009, 0907.3778.

[25]  M. Kus,et al.  Concurrence of mixed bipartite quantum states in arbitrary dimensions. , 2004, Physical review letters.

[26]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[27]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.