Quasi-newton methods for real-time simulation of hyperelastic materials

We present a new method for real-time physics-based simulation supporting many different types of hyperelastic materials. Previous methods such as Position-Based or Projective Dynamics are fast but support only a limited selection of materials; even classical materials such as the Neo-Hookean elasticity are not supported. Recently, Xu et al. [2015] introduced new “spline-based materials” that can be easily controlled by artists to achieve desired animation effects. Simulation of these types of materials currently relies on Newton’s method, which is slow, even with only one iteration per timestep. In this article, we show that Projective Dynamics can be interpreted as a quasi-Newton method. This insight enables very efficient simulation of a large class of hyperelastic materials, including the Neo-Hookean, spline-based materials, and others. The quasi-Newton interpretation also allows us to leverage ideas from numerical optimization. In particular, we show that our solver can be further accelerated using L-BFGS updates (Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm). Our final method is typically more than 10 times faster than one iteration of Newton’s method without compromising quality. In fact, our result is often more accurate than the result obtained with one iteration of Newton’s method. Our method is also easier to implement, implying reduced software development costs.

[1]  Jacob Fish,et al.  An efficient multilevel solution scheme for large scale non-linear systems , 1995 .

[2]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[3]  Stephen F. McCormick,et al.  Smoothed aggregation multigrid for cloth simulation , 2015, ACM Trans. Graph..

[4]  Rahul Narain,et al.  ADMM ⊇ projective dynamics: fast simulation of general constitutive models , 2016, Symposium on Computer Animation.

[5]  François Faure,et al.  Stable constrained dynamics , 2015, ACM Trans. Graph..

[6]  Klaus-Jürgen Bathe,et al.  Some practical procedures for the solution of nonlinear finite element equations , 1980 .

[7]  Mathieu Desbrun,et al.  Interactive Animation of Structured Deformable Objects , 1999, Graphics Interface.

[8]  P. Schröder,et al.  A simple geometric model for elastic deformations , 2010, SIGGRAPH 2010.

[9]  Markus H. Gross,et al.  Rig-space physics , 2012, ACM Trans. Graph..

[10]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[11]  Mark Pauly,et al.  Shape‐Up: Shaping Discrete Geometry with Projections , 2012, Comput. Graph. Forum.

[12]  James F. O'Brien,et al.  Updated sparse cholesky factors for corotational elastodynamics , 2012, TOGS.

[13]  Nuttapong Chentanez,et al.  Long range attachments - a method to simulate inextensible clothing in computer games , 2012, SCA '12.

[14]  Jos Stam,et al.  Nucleus: Towards a unified dynamics solver for computer graphics , 2009, 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[15]  Huamin Wang,et al.  A chebyshev semi-iterative approach for accelerating projective and position-based dynamics , 2015, ACM Trans. Graph..

[16]  Marco Fratarcangeli,et al.  Scalable Partitioning for Parallel Position Based Dynamics , 2015, Comput. Graph. Forum.

[17]  Andrew Selle,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, SIGGRAPH 2011.

[18]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[19]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[20]  Wojciech Matusik,et al.  Data-driven finite elements for geometry and material design , 2015, ACM Trans. Graph..

[21]  Theodore Kim,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.

[22]  Mark Meyer,et al.  Subspace condensation , 2015, ACM Trans. Graph..

[23]  Greg Turk,et al.  A finite element method for animating large viscoplastic flow , 2007, SIGGRAPH 2007.

[24]  Miguel A. Otaduy,et al.  A Survey on Position‐Based Simulation Methods in Computer Graphics , 2014, Comput. Graph. Forum.

[25]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[26]  John William Neuberger,et al.  Sobolev gradients and differential equations , 1997 .

[27]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[28]  宮川翔貴 ”Fast Simulation of Mass‐Spring Systems”の研究報告 , 2016 .

[29]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, SIGGRAPH 2005.

[30]  Martin Servin,et al.  Interactive simulation of elastic deformable materials. , 2006 .

[31]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[32]  Rüdiger Westermann,et al.  Workshop on Virtual Reality Interaction and Physical Simulation (2005) a Multigrid Framework for Real-time Simulation of Deformable Volumes , 2022 .

[33]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[34]  R. Landel,et al.  The Strain‐Energy Function of a Hyperelastic Material in Terms of the Extension Ratios , 1967 .

[35]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[36]  Merlin Nimier-David,et al.  Building and animating user-specific volumetric face rigs , 2016, Symposium on Computer Animation.

[37]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[38]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[39]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[40]  Elaine Cohen,et al.  Animation of Deformable Bodies with Quadratic Bézier Finite Elements , 2014, ACM Trans. Graph..

[41]  Olaf Etzmuß,et al.  A High Performance Solver for the Animation of Deformable Objects using Advanced Numerical Methods , 2001, Comput. Graph. Forum.

[42]  Doug L. James,et al.  FastLSM: fast lattice shape matching for robust real-time deformation , 2007, SIGGRAPH 2007.

[43]  Tae-Yong Kim,et al.  Air meshes for robust collision handling , 2015, ACM Trans. Graph..

[44]  Raanan Fattal,et al.  Efficient simulation of inextensible cloth , 2007, SIGGRAPH 2007.

[45]  Olga Sorkine-Hornung,et al.  Interference-aware geometric modeling , 2011, ACM Trans. Graph..

[46]  Tae-Yong Kim,et al.  Strain based dynamics , 2014, SCA '14.

[47]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[48]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[49]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[50]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[51]  Tobias Martin,et al.  Efficient Non‐linear Optimization via Multi‐scale Gradient Filtering , 2013, Comput. Graph. Forum.

[52]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[53]  Bailin Deng,et al.  Exploring Local Modifications for Constrained Meshes , 2013, Comput. Graph. Forum.

[54]  Wolfgang Straßer,et al.  Continuum‐based Strain Limiting , 2009, Comput. Graph. Forum.

[55]  James F. O'Brien,et al.  Multi-resolution isotropic strain limiting , 2010, SIGGRAPH 2010.

[56]  N. Chentanez,et al.  Solid simulation with oriented particles , 2011, SIGGRAPH 2011.

[57]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[58]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[59]  Hongyi Xu,et al.  Nonlinear material design using principal stretches , 2015, ACM Trans. Graph..

[60]  Matthias Müller,et al.  Hierarchical Position Based Dynamics , 2008, VRIPHYS.

[61]  Denis Zorin,et al.  Subspace integration with local deformations , 2013, ACM Trans. Graph..

[62]  John William Neuberger Steepest descent for general systems of linear differential equations in Hilbert space , 1983 .

[63]  Jan Bender,et al.  Position-based simulation of continuous materials , 2014, Comput. Graph..

[64]  Doug L. James,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH 2008.

[65]  Hujun Bao,et al.  Space-time editing of elastic motion through material optimization and reduction , 2014, ACM Trans. Graph..

[66]  Theodore Kim,et al.  Simulating articulated subspace self-contact , 2014, ACM Trans. Graph..

[67]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[68]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.