Memristive devices: Switching effects, modeling, and applications

The rapid, exponential growth of modern electronics has brought about profound changes to our daily lives. However, maintaining the growth trend now faces significant challenges at both the fundamental and practical levels [1]. Possible solutions include More Moore—developing new, alternative device structures, and materials while maintaining the same basic computer architecture, and More Than Moore—enabling alternative computing architectures and hybrid integration to achieve increased system functionality without trying to push the devices beyond limits. In particular, an increasing number of computing tasks today are related to handling large amounts of data, e.g. image processing as an example. Conventional von Neumann digital computers, with separate memory and processer units, become less and less efficient when large amount of data have to be moved around and processed quickly. Alternative approaches such as bio-inspired neuromorphic circuits, with distributed computing and localized storage in networks, become attractive options [2–6].

[1]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[2]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[3]  W. Lu,et al.  CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.

[4]  K L Magleby,et al.  The effect of repetitive stimulation on facilitation of transmitter release at the frog neuromuscular junction , 1973, The Journal of physiology.

[5]  W. Regehr,et al.  Determinants of the Time Course of Facilitation at the Granule Cell to Purkinje Cell Synapse , 1996, The Journal of Neuroscience.

[6]  Gregory S. Snider,et al.  Spike-timing-dependent learning in memristive nanodevices , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[7]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[8]  Yuchao Yang,et al.  Complementary resistive switching in tantalum oxide-based resistive memory devices , 2012, 1204.3515.

[9]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[10]  John Paul Strachan,et al.  Diffusion of Adhesion Layer Metals Controls Nanoscale Memristive Switching , 2010, Advanced materials.

[11]  W. Lu,et al.  Programmable Resistance Switching in Nanoscale Two-terminal Devices , 2008 .

[12]  Massimiliano Di Ventra,et al.  Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements , 2010, Proceedings of the IEEE.

[13]  R Stanley Williams,et al.  Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices , 2012, Nanotechnology.

[14]  Chi-Sang Poon,et al.  Neuromorphic Silicon Neurons and Large-Scale Neural Networks: Challenges and Opportunities , 2011, Front. Neurosci..

[15]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[16]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[17]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[18]  Jian-jang Huang,et al.  Investigation of light absorption properties and acceptance angles of nanopatterned GZO/a-Si/p + -Si photodiodes , 2010, Nanotechnology.

[19]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[20]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[21]  Richard C. Atkinson,et al.  Search and retrieval processes in long-term memory , 1968 .

[22]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[23]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[24]  L. Cooper,et al.  A unified model of NMDA receptor-dependent bidirectional synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Bear,et al.  A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity , 2011, Proceedings of the National Academy of Sciences.

[26]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[27]  Narayan Srinivasa,et al.  A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. , 2012, Nano letters.

[28]  J. Yang,et al.  Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High‐Performance Memristor , 2011, Advanced materials.

[29]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[30]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[31]  Henry Markram,et al.  Neural Networks with Dynamic Synapses , 1998, Neural Computation.

[32]  Yuchao Yang,et al.  Building Neuromorphic Circuits with Memristive Devices , 2013, IEEE Circuits and Systems Magazine.

[33]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[34]  L. Chua Memristor-The missing circuit element , 1971 .

[35]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[36]  M. Ziegler,et al.  An Electronic Version of Pavlov's Dog , 2012 .

[37]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[38]  R. Williams,et al.  Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. , 2009, Small.

[39]  O. Richard,et al.  10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation , 2011, 2011 International Electron Devices Meeting.

[40]  H. Hwang,et al.  Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device , 2011, Nanotechnology.

[41]  Wei Lu,et al.  Short-term Memory to Long-term Memory Transition in a Nanoscale Memristor , 2022 .

[42]  Shimeng Yu,et al.  An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation , 2011, IEEE Transactions on Electron Devices.

[43]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[44]  M. Pickett,et al.  A scalable neuristor built with Mott memristors. , 2013, Nature materials.

[45]  Pérez,et al.  Synchronization, diversity, and topology of networks of integrate and fire oscillators , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  T. Hasegawa,et al.  Learning Abilities Achieved by a Single Solid‐State Atomic Switch , 2010, Advanced materials.

[47]  I. Pavlov Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex , 1929 .

[48]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[49]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[50]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[51]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[52]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[53]  C. Gamrat,et al.  An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse , 2009, 0907.2540.

[54]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[55]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[56]  Dharmendra S. Modha,et al.  Cognitive Computing , 2011, Informatik-Spektrum.

[57]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[58]  J. Yang,et al.  Metal/TiO2 interfaces for memristive switches , 2011 .

[59]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[60]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[61]  Siddharth Gaba,et al.  Nanoscale resistive memory with intrinsic diode characteristics and long endurance , 2010 .

[62]  A. Thomas,et al.  The Memristive Magnetic Tunnel Junction as a Nanoscopic Synapse‐Neuron System , 2012, Advanced materials.

[63]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[64]  Wei Lu Memristors: Going active. , 2013, Nature materials.

[65]  Y. Liu,et al.  Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor , 2012 .

[66]  Wei Lu,et al.  Interference and memory capacity effects in memristive systems , 2013 .

[67]  Kuang-Yeu Hsieh,et al.  A study of the switching mechanism and electrode material of fully CMOS compatible tungsten oxide ReRAM , 2011 .

[68]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[69]  Siddharth Gaba,et al.  Synaptic behaviors and modeling of a metal oxide memristive device , 2011 .

[70]  C. Hu,et al.  9nm half-pitch functional resistive memory cell with <1µA programming current using thermally oxidized sub-stoichiometric WOx film , 2010, 2010 International Electron Devices Meeting.

[71]  Audrius V. Avizienis,et al.  Emergent Criticality in Complex Turing B‐Type Atomic Switch Networks , 2012, Advanced materials.

[72]  I. Pavlov,et al.  Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. , 1929, Annals of neurosciences.

[73]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[74]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.