The nitrilase family of CN hydrolysing enzymes – a comparative study

The enzymes nitrilase, cyanide dihydratase and cyanide hydratase are a group of closely related proteins. The proteins show significant similarities at the amino acid and protein structure level but the enzymes show many differences in catalytic capability. Nitrilases, while catalysing the hydration of nitrile to the corresponding acid, vary widely in substrate specificity. Cyanide dihydratase and cyanide hydratase use HCN as the only efficient substrate but produce acid and amide products, respectively. The similarities of all these enzymes at the amino acid level but the functional differences between them provide a rich source of material for the study of structure/function relationships in this biotechnologically important group of enzymes. This review provides an overview of current understanding of the genetics and biochemistry of this interesting group of enzymes.

[1]  D. Mansuy,et al.  Chaperone-assisted expression, purification, and characterization of recombinant nitrile hydratase NI1 from Comamonas testosteroni. , 2003, Protein expression and purification.

[2]  P. Harnedy,et al.  The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity. , 2003, FEMS microbiology letters.

[3]  M. Haslbeck,et al.  GroE-dependent expression and purification of pig heart mitochondrial citrate synthase in Escherichia coli. , 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[4]  Barbara A Halkier,et al.  Glucosinolate research in the Arabidopsis era. , 2002, Trends in plant science.

[5]  M. Bailey,et al.  Substrate-regulated cyanide hydratase (chy) gene expression in Fusarium solani: the potential of a transcription-based assay for monitoring the biotransformation of cyanide complexes. , 2002, Environmental microbiology.

[6]  J. Rosner,et al.  The AraC transcriptional activators. , 2001, Current opinion in microbiology.

[7]  A. Müller,et al.  Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster , 2001, Planta.

[8]  M. Piotrowski,et al.  The Arabidopsis thaliana Isogene NIT4 and Its Orthologs in Tobacco Encode β-Cyano-l-alanine Hydratase/Nitrilase* , 2001, The Journal of Biological Chemistry.

[9]  C. Brenner,et al.  The nitrilase superfamily: classification, structure and function , 2001, Genome Biology.

[10]  A. Müller,et al.  IAA-Synthase, an Enzyme Complex from Arabidopsis thaliana Catalyzing the Formation of Indole-3-Acetic Acid from (S)-Tryptophan , 2000, Biological chemistry.

[11]  Y. Pekarsky,et al.  Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers , 2000, Current Biology.

[12]  Y. Ikenaka,et al.  Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. , 2000, Structure.

[13]  B. Howlett,et al.  Characterisation of a cyanide hydratase gene in the phytopathogenic fungus Leptosphaeria maculans , 2000, Molecular and General Genetics MGG.

[14]  K. Okamoto,et al.  Degradation of the metal-cyano complex tetracyanonickelate (II) by Fusarium oxysporum N-10 , 2000, Applied Microbiology and Biotechnology.

[15]  Y. Asano,et al.  Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. , 2000, Biochemistry.

[16]  R. Fallon,et al.  A Gram-negative bacterium producing a heat-stable nitrilase highly active on aliphatic dinitriles , 1999, Applied Microbiology and Biotechnology.

[17]  D. Cowan,et al.  Characterization of an inducible nitrilase from a thermophilic bacillus , 1999, Extremophiles.

[18]  H. Vanetten,et al.  Disruption of the cyanide hydratase gene in Gloeocercospora sorghi increases its sensitivity to the phytoanticipin cyanide but does not affect its pathogenicity on the cyanogenic plant sorghum. , 1999, Fungal genetics and biology : FG & B.

[19]  R. Shanker,et al.  Transformation of aliphatic and aromatic nitriles by a nitrilase from Pseudomonas sp. , 1999 .

[20]  N. Shivaraman,et al.  Biodegradation of cyanide compounds by a Pseudomonas species (S1). , 1999, Canadian journal of microbiology.

[21]  M. Kobayashi,et al.  Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis. , 1998, Biochemical and biophysical research communications.

[22]  A. Bunch,et al.  The nitrilases of Rhodococcus rhodochrous NCIMB 11216 , 1998 .

[23]  A. Willetts,et al.  Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155 , 1998 .

[24]  C. Knowles,et al.  Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions , 1998 .

[25]  I. Karube,et al.  Cloning and expression of a gene encoding cyanidase from Pseudomonas stutzeri AK61 , 1998, Applied Microbiology and Biotechnology.

[26]  T. Kudo,et al.  Molecular cloning and nucleotide sequence of the groEL gene from the alkaliphilic Bacillus sp. strain C-125 and reactivation of thermally inactivated alpha-glucosidase by recombinant GroEL. , 1996, Bioscience, biotechnology, and biochemistry.

[27]  M. Kobayashi,et al.  Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. T. Brown,et al.  Expression of the cyanide hydratase enzyme from Fusarium lateritium in Escherichia coli and identification of an essential cysteine residue. , 1995, FEMS microbiology letters.

[29]  R. Tata,et al.  Pseudomonas aeruginosa aliphatic amidase is related to the nitrilase/cyanide hydratase enzyme family and Cys166 is predicted to be the active site nucleophile of the catalytic mechanism , 1995, FEBS letters.

[30]  O. Yoo,et al.  The cDNA sequence of two MADS box genes in panax ginseng (accession no. Z46612 for GAG2, Z46613 for GAG1) , 1995 .

[31]  D. Holmes,et al.  Biological cyanide destruction mediated by microorganisms , 1995, World journal of microbiology & biotechnology.

[32]  P. Bork,et al.  A new family of carbon‐nitrogen hydrolases , 1994, Protein science : a publication of the Protein Society.

[33]  G. Fink,et al.  Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Kunz,et al.  Alternative routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764. , 1994, Microbiology.

[35]  E. Weiler,et al.  Molecular characterization of two cloned nitrilases from Arabidopsis thaliana: key enzymes in biosynthesis of the plant hormone indole-3-acetic acid. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. Rawlings,et al.  Isolation and characterization of a cyanide dihydratase from Bacillus pumilus C1 , 1993, Journal of bacteriology.

[37]  D. T. Brown,et al.  Purification and properties of cyanide hydratase from Fusarium lateritium and analysis of the corresponding chy1 gene. , 1993, Journal of general microbiology.

[38]  F. Kawamura,et al.  Isolation and characterization of the groES and groEL genes of Bacillus subtilis Marburg. , 1992, Bioscience, biotechnology, and biochemistry.

[39]  D. Matthews,et al.  Purification and characterization of cyanide hydratase from the phytopathogenic fungus Gloeocercospora sorghi. , 1992, Archives of biochemistry and biophysics.

[40]  H. Yamada,et al.  Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue. , 1992, The Journal of biological chemistry.

[41]  H. Yamada,et al.  Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. , 1992, Biochemistry.

[42]  H. Vanetten,et al.  Cloning and properties of a cyanide hydratase gene from the phytopathogenic fungus Gloeocercospora sorghi. , 1992, Biochemical and biophysical research communications.

[43]  A. Mihoc,et al.  Mechanistic and structural studies on Rhodococcus ATCC 39484 nitrilase.“ , 1992, Biotechnology and applied biochemistry.

[44]  T. Bhalla,et al.  Asymmetric hydrolysis of α-aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34 , 1992, Applied Microbiology and Biotechnology.

[45]  E. Weiler,et al.  Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. , 1992, European journal of biochemistry.

[46]  S. Godtfredsen,et al.  Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans , 1991, Applied and environmental microbiology.

[47]  K. Yamamoto,et al.  Purification and characterization of nitrilase responsible for the enantioselective hydrolysis from Acinetobacter sp. AK 226. , 1991, Agricultural and biological chemistry.

[48]  H. Yamada,et al.  A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Purification and characterization. , 1990, European journal of biochemistry.

[49]  H. Yamada,et al.  Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles , 1990, Journal of bacteriology.

[50]  H. Yamada,et al.  Nitrilase of Rhodococcus rhodochrous J1 , 1989 .

[51]  J. Ludwig-Müller,et al.  A plasma membrane-bound enzyme oxidizes L-tryptophan to indole-3-acetaldoxime. , 1988 .

[52]  D. Stalker,et al.  Purification and properties of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide sequence analysis of the bxn gene. , 1988, The Journal of biological chemistry.

[53]  D. Stalker,et al.  Cloning and expression in Escherichia coli of a Klebsiella ozaenae plasmid-borne gene encoding a nitrilase specific for the herbicide bromoxynil , 1987, Journal of bacteriology.

[54]  D. Stalker,et al.  Metabolism of the herbicide bromoxynil by Klebsiella pneumoniae subsp. ozaenae , 1986, Applied and environmental microbiology.

[55]  E. Conn,et al.  Metabolism of hydrogen cyanide by higher plants. , 1980, Plant physiology.

[56]  D. B. Harper,et al.  Fungal degradation of aromatic nitriles. Enzymology of C-N cleavage by Fusarium solani. , 1977, The Biochemical journal.

[57]  D. B. Harper Microbial metabolism of aromatic nitriles. Enzymology of C-N cleavage by Nocardia sp. (Rhodochrous group) N.C.I.B. 11216. , 1977, The Biochemical journal.

[58]  W. Fry,et al.  Hydrogen cyanide detoxification by Gloeocercospora sorghi , 1975 .

[59]  W. Fry,et al.  Cyanide degradion by an enzyme from Stemphylium loti. , 1972, Archives of biochemistry and biophysics.

[60]  W. G. Robinson,et al.  RICININE NITRILASE. II. PURIFICATION AND PROPERTIES. , 1964, The Journal of biological chemistry.

[61]  W. G. Robinson,et al.  RICININE NITRILASE. I. REACTION PRODUCT AND SUBSTRATE SPECIFICITY. , 1964, The Journal of biological chemistry.

[62]  K. Thimann,et al.  NITRILASE. II. SUBSTRATE SPECIFICITY AND POSSIBLE MODE OF ACTION. , 1964, Archives of biochemistry and biophysics.

[63]  K. Thimann,et al.  NITRILASE. I. OCCURRENCE, PREPARATION, AND GENERAL PROPERTIES OF THE ENZYME. , 1964, Archives of biochemistry and biophysics.

[64]  E. Weiler,et al.  Structural analysis of the nit2/nit1/nit3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in indole-acetic acid biosynthesis in Arabidopsis thaliana , 2004, Plant Molecular Biology.

[65]  H. Wajant,et al.  Characterization and synthetic applications of recombinant AtNIT1 from Arabidopsis thaliana. , 2002, European journal of biochemistry.

[66]  A. Banerjee,et al.  The nitrile-degrading enzymes: current status and future prospects. , 2002, Applied microbiology and biotechnology.

[67]  K. Gekko,et al.  Nitrilase of Rhodococcus rhodochrous J1. Conversion into the active form by subunit association. , 2000, European journal of biochemistry.

[68]  J. Vetter Plant cyanogenic glycosides. , 2000, Toxicon : official journal of the International Society on Toxinology.

[69]  M. Kobayashi,et al.  Nitrile hydrolases. , 2000, Current opinion in chemical biology.

[70]  Y. Asano,et al.  Z-phenylacetaldoxime degradation by a novel aldoxime dehydratase from Bacillus sp. strain OxB-1 , 1998 .

[71]  J. Crouzet,et al.  Aliphatic nitrilase from a soil-isolated Comamonas testosteroni sp.: gene cloning and overexpression, purification and primary structure. , 1995, Gene.

[72]  H. Yamada,et al.  Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Keizo Yamamoto,et al.  Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile , 1992 .

[74]  A. Goldlust,et al.  Induction, purification, and characterization of the nitrilase of Fusarium oxysporum f. sp. melonis , 1989 .

[75]  H. Yamada,et al.  Nitrilase of Rhodococcus rhodochrous J1. Purification and characterization. , 1989, European journal of biochemistry.

[76]  D. B. Harper,et al.  Characterization of a nitrilase from Nocardia sp. (Rhodochrous group) N.C.I.B. 11215, using p-hydroxybenzonitrile as sole carbon source. , 1985, The International journal of biochemistry.

[77]  S. Beer,et al.  Hydrogen Cyanide Sensitivity in Bacterial Pathogens of Cyanogenic and Non-Cyanogenic Plants , 1980 .

[78]  T. Rausch,et al.  Partial purification of nitrilase from Chinese cabbage. , 1980 .