Pushdown Games with Unboundedness and Regular Conditions

We consider infinitary two-player perfect information games defined over graphs of configurations of a pushdown automaton. We show how to solve such games when winning conditions are Boolean combinations of a Buchi condition and a new condition that we call unboundedness. An infinite play satisfies the unboundedness condition if there is no bound on the size of the stack during the play. We show that the problem of deciding a winner in such games is EXPTIME-complete.

[1]  David E. Muller,et al.  Alternating Automata on Infinite Trees , 1987, Theor. Comput. Sci..

[2]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[3]  E. Muller David,et al.  Alternating automata on infinite trees , 1987 .

[4]  A. Prasad Sistla,et al.  On Model-Checking for Fragments of µ-Calculus , 1993, CAV.

[5]  Thierry Cachat,et al.  Uniform Solution of Parity Games on Prefix-Recognizable Graphs , 2003, INFINITY.

[6]  Wieslaw Zielonka,et al.  Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees , 1998, Theor. Comput. Sci..

[7]  Igor Walukiewicz,et al.  Games for synthesis of controllers with partial observation , 2003, Theor. Comput. Sci..

[8]  Antoni Mazurkiewicz,et al.  CONCUR '97: Concurrency Theory , 1997, Lecture Notes in Computer Science.

[9]  Orna Kupferman,et al.  An Automata-Theoretic Approach to Reasoning about Infinite-State Systems , 2000, CAV.

[10]  Igor Walukiewicz,et al.  Pushdown Processes: Games and Model-Checking , 1996, Inf. Comput..

[11]  Wolfgang Thomas,et al.  Solving Pushdown Games with a Sigma3 Winning Condition , 2002, CSL.

[12]  I. Walukiewicz Pushdown Processes: Games and Model Checking , 1996 .

[13]  Jim Alves-Foss,et al.  Higher Order Logic Theorem Proving and its Applications 8th International Workshop, Aspen Grove, Ut, Usa, September 11-14, 1995 : Proceedings , 1995 .

[14]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[15]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[16]  Wolfgang Thomas,et al.  On the Synthesis of Strategies in Infinite Games , 1995, STACS.

[17]  Javier Esparza,et al.  Reachability Analysis of Pushdown Automata: Application to Model-Checking , 1997, CONCUR.

[18]  A. Prasad Sistla,et al.  On model checking for the µ-calculus and its fragments , 2001, Theor. Comput. Sci..

[19]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[20]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[21]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[22]  Thierry Cachat Symbolic Strategy Synthesis for Games on Pushdown Graphs , 2002, ICALP.

[23]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[24]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[25]  Andreas Podelski,et al.  Efficient algorithms for pre* and post* on interprocedural parallel flow graphs , 2000, POPL '00.

[26]  Andreas Podelski,et al.  Efficient Algorithms for Pre$^\star$ and Post$^\star$ on Interprocedural Parallel Flow Graphs , 2000 .