On uniformly continuous functions for some profinite topologies

Given a variety of finite monoids V, a subset of a monoid is a V-subset if its syntactic monoid belongs to V. A function between two monoids is V-preserving if it preserves V-subsets under preimages and it is hereditary V-preserving if it is W-preserving for every subvariety W of V. The aim of this paper is to study hereditary V-preserving functions when V is one of the following varieties of finite monoids: groups, p-groups, aperiodic monoids, commutative monoids and all monoids.

[1]  D. M. Clark Theory of Groups , 2012 .

[2]  Serge Grigorieff,et al.  Newton representation of functions over natural integers having integral difference ratios , 2013, ArXiv.

[3]  Robert McNaughton,et al.  Regularity-Preserving Relations , 1976, Theor. Comput. Sci..

[4]  K. Mahler,et al.  An Interpolation Series for Continuous Functions of a p-adic Variable. , 1958 .

[5]  David Singmaster,et al.  Notes on Binomial Coefficients I—A Generalization of Lucas' Congruence , 1974 .

[6]  Jean-Éric Pin,et al.  Newton's Forward Difference Equation for Functions from Words to Words , 2015, CiE.

[7]  S. Rao Kosaraju Regularity preserving functions , 1974, SIGA.

[8]  J. Rotman The theory of groups : an introduction , 1966 .

[9]  Richard Edwin Stearns,et al.  Regularity Preserving Modifications of Regular Expressions , 1963, Inf. Control..

[10]  Christophe Reutenauer,et al.  Variétés et fonctions rationnelles , 1995, Theor. Comput. Sci..

[11]  Pedro V. Silva,et al.  A Mahler's theorem for functions from words to integers , 2008, STACS.

[12]  C. Reutenauer,et al.  Varieties and rational functions , 1995 .

[13]  Pedro V. Silva,et al.  On Profinite Uniform Structures Defined by Varieties of Finite Monoids , 2011, Int. J. Algebra Comput..

[14]  David Singmaster Notes on Binomial Coefficients Iii—Any Integer Divides Almost All Binomial Coefficients† , 1974 .

[15]  E. Kummer,et al.  Ueber die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. , 1852 .

[16]  Rudolf Ahlswede,et al.  Approximation of continuous functions in p-adic analysis , 1975 .

[17]  K. Mahler,et al.  A correction to the paper An Interpolation Series for continuous functions of a p-adic variable. , 1961 .

[18]  Pedro V. Silva,et al.  A noncommutative extension of Mahler's theorem on interpolation series , 2014, Eur. J. Comb..

[19]  Yvette Amice,et al.  Interpolation $p$-adique , 1964 .

[20]  M. Hall The Theory Of Groups , 1959 .

[21]  E. Kummer Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. , 1852 .

[22]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[23]  Sophie Frisch,et al.  BINOMIAL COEFFICIENTS GENERALIZED WITH RESPECT TO A DISCRETE VALUATION , 1998 .