Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.

The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance.

[1]  C. Battaglia,et al.  Micromorph thin-film silicon solar cells with transparent high-mobility hydrogenated indium oxide front electrodes , 2011 .

[2]  Arvind Shah,et al.  Relation between substrate surface morphology and microcrystalline silicon solar cell performance , 2008 .

[3]  A. Compaan,et al.  All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO:Al transparent conducting oxide , 2004 .

[4]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[5]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[6]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[7]  Arvind Shah,et al.  Efficiency limits for single-junction and tandem solar cells , 2006 .

[8]  Bernd Rech,et al.  The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells , 2007 .

[9]  The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells , 2007 .

[10]  U. Rau,et al.  Characterization and simulation of a-Si:H/μc-Si:H tandem solar cells , 2011 .

[11]  Christophe Ballif,et al.  Optical management in high‐efficiency thin‐film silicon micromorph solar cells with a silicon oxide based intermediate reflector , 2008 .

[12]  N. Wyrsch,et al.  Substrate dependent stability and interplay between optical and electrical properties in μc-Si:H single junction solar cells , 2011 .

[13]  Mukti Aryal,et al.  Imprinted large-scale high density polymer nanopillars for organic solar cells , 2008 .

[14]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[15]  C. Ballif,et al.  Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells , 2010 .

[16]  Arvind Shah,et al.  Rough ZnO Layers by LP-CVD Process and their Effect in Improving Performances of Amorphous and Microcrystalline Silicon Solar Cells , 2006 .

[17]  T. Sawada,et al.  Spectral Characteristics of Thin-Film Stacked-Tandem Solar Modules , 2004 .

[18]  C. Battaglia,et al.  Optimization of ZnO Front Electrodes for High-Efficiency Micromorph Thin-Film Si Solar Cells , 2012, IEEE Journal of Photovoltaics.

[19]  C. Battaglia,et al.  Unlinking absorption and haze in thin film silicon solar cells front electrodes , 2010 .

[20]  Max Shtein,et al.  Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography , 2007 .

[21]  P. Buehlmann,et al.  In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells , 2007 .

[22]  Johannes Meier,et al.  High-Efficiency Amorphous Silicon Devices on LPCVD-ZnO TCO Prepared in Industrial KAI TM-M R&D Reactor , 2009 .

[23]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[24]  C. Battaglia,et al.  High fidelity transfer of nanometric random textures by UV embossing for thin film solar cells applications , 2011 .

[25]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[26]  Hiroshi Sakai,et al.  Effects of Surface Morphology of Transparent Electrode on the Open-Circuit Voltage in a-Si:H Solar Cells , 1990 .

[27]  Weston A. Hermann Quantifying global exergy resources , 2006 .

[28]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[29]  M. Kondo,et al.  Application of hydrogen-doped In2O3 transparent conductive oxide to thin-film microcrystalline Si solar cells , 2010 .

[30]  A. Aberle Thin-film solar cells , 2009 .

[31]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[32]  Yoshiaki Kanamori,et al.  Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response , 2011 .

[33]  C. Battaglia,et al.  Optimization of thin film silicon solar cells on highly textured substrates , 2011 .

[34]  C. Battaglia,et al.  Nanoimprint lithography for high-efficiency thin-film silicon solar cells. , 2011, Nano letters.

[35]  C. Battaglia,et al.  Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting , 2010 .

[36]  C. Battaglia,et al.  Nanometer- and Micrometer-Scale Texturing for High-Efficiency Micromorph Thin-Film Silicon Solar Cells , 2012, IEEE Journal of Photovoltaics.

[37]  Kenji Yamamoto,et al.  A high efficiency thin film silicon solar cell and module , 2004 .

[38]  Eli Yablonovitch,et al.  Optically enhanced amorphous silicon solar cells , 1983 .