Quasi-Cross Lattice Tilings With Applications to Flash Memory

We consider lattice tilings of ℝ<sup>n</sup> by a shape we call a (k<sub>+</sub>, k<sub>-</sub>, n)-quasi-cross. Such lattices form perfect error-correcting codes which correct a single limited-magnitude error with prescribed maximal-magnitudes k<sub>+</sub> and k<sub>-</sub> of positive error and negative error respectively (the ratio of which, β = k<sub>-</sub>/k<sub>+</sub>, is called the balance ratio). These codes can be used to correct both disturb and retention errors in flash memories, which are characterized by having limited magnitudes and different signs. For any rational 0 <; β <; 1 we construct an infinite family of (k<sub>+</sub>, k<sub>-</sub>, n)-quasi-cross lattice tilings with balance ratio k<sub>-</sub>/k<sub>+</sub> = β. We also provide a specific construction for an infinite family of (2,1, n) -quasi-cross lattice tilings. The constructions are related to group splitting and modular B<sub>1</sub> sequences. In addition, we study bounds on the parameters of lattice-tilings by quasi-crosses, and express them in terms of the arm lengths of the quasi-crosses and the dimension. We also prove constraints on group splitting, a specific case of which shows that the parameters of the lattice tiling by (2, 1, n)-quasi-crosses are the only ones possible for these quasi-crosses.

[1]  P. Horak Tilings in Lee metric , 2009, Eur. J. Comb..

[2]  W. Marsden I and J , 2012 .

[3]  Rudolf Ahlswede,et al.  On q-ary codes correcting all unidirectional errors of a limited magnitude , 2006, ArXiv.

[4]  Moshe Schwartz Constant-Weight Gray Codes for Local Rank Modulation , 2011, IEEE Transactions on Information Theory.

[5]  Anxiao Jiang,et al.  Rank modulation for flash memories , 2008, 2008 IEEE International Symposium on Information Theory.

[6]  Michael Langberg,et al.  On a construction for constant-weight Gray codes for local rank modulation , 2010, 2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel.

[7]  Zhongfeng Wang,et al.  Error correction for multi-level NAND flash memory using Reed-Solomon codes , 2008, 2008 IEEE Workshop on Signal Processing Systems.

[8]  Ulrich Tamm Splittings of Cyclic Groups and Perfect Shift Codes , 1998, IEEE Trans. Inf. Theory.

[9]  Sherman Stein Packings of Rn by certain error spheres , 1984, IEEE Trans. Inf. Theory.

[10]  T. Apostol Introduction to analytic number theory , 1976 .

[11]  Tuvi Etzion,et al.  Product Constructions for Perfect Lee Codes , 2011, IEEE Transactions on Information Theory.

[12]  Torleiv Kløve,et al.  Systematic, Single Limited Magnitude Error Correcting Codes for Flash Memories , 2011, IEEE Transactions on Information Theory.

[13]  Peter Horak,et al.  Error-correcting codes and Minkowski’s conjecture , 2010 .

[14]  Jehoshua Bruck,et al.  Codes for Asymmetric Limited-Magnitude Errors With Application to Multilevel Flash Memories , 2010, IEEE Transactions on Information Theory.

[15]  Torleiv Kløve,et al.  Systematic single limited magnitude asymmetric error correcting codes , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[16]  Arya Mazumdar,et al.  Codes in Permutations and Error Correction for Rank Modulation , 2009, IEEE Transactions on Information Theory.

[17]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .

[18]  Ulrich Tamm On perfect integer codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[19]  Dean Hickerson,et al.  Abelian groups and packing by semicrosses. , 1986 .

[20]  Karel A. Post Nonexistence Theorems on Perfect Lee Codes over Large Alphabets , 1975, Inf. Control..

[21]  Anxiao Jiang,et al.  Correcting Charge-Constrained Errors in the Rank-Modulation Scheme , 2010, IEEE Transactions on Information Theory.

[22]  Jehoshua Bruck,et al.  Partial rank modulation for flash memories , 2010, 2010 IEEE International Symposium on Information Theory.

[23]  Moshe Schwartz,et al.  Correcting Limited-Magnitude Errors in the Rank-Modulation Scheme , 2009, IEEE Transactions on Information Theory.

[24]  Tong Zhang,et al.  On the Use of Strong BCH Codes for Improving Multilevel NAND Flash Memory Storage Capacity , 2006 .

[25]  Joe Brewer,et al.  Nonvolatile memory technologies with emphasis on flash , 2007 .

[26]  Bella Bose,et al.  Optimal, Systematic, $q$-Ary Codes Correcting All Asymmetric and Symmetric Errors of Limited Magnitude , 2010, IEEE Transactions on Information Theory.

[27]  P. Horak On perfect Lee codes , 2009, Discret. Math..