Seeing the light: a photonic visual prosthesis for the blind

This paper highlights how the genetic incorporation of artificial opsins into the retina can lead to a new class of retinal prosthesis. We demonstrate the efficacy of incorporating channelrhodopsin into neuron cells in-vitro and show how that can be scaled to in-vivo. We show that we need typically 100mW/cm2 of instantaneous light intensity on the neuron in order to stimulate action potentials which results in 10W/cm2 required from the light source. We thus use GaN LED arrays to provide spatially controlled stimulation which is of sufficient brightness to stimulate the cells.

[1]  E. Zrenner,et al.  Can subretinal microphotodiodes successfully replace degenerated photoreceptors? , 1999, Vision Research.

[2]  C. Inglehearn,et al.  Molecular genetics of human retinal dystrophies , 1998, Eye.

[3]  K. Nikolic,et al.  A Non-Invasive Retinal Prosthesis - Testing the Concept , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[4]  J. Dowling,et al.  Current and future prospects for optoelectronic retinal prostheses , 2009, Eye.

[5]  Christofer Toumazou,et al.  A CMOS image sensor with spiking pixels for retinal stimulation , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[6]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[7]  A. Dizhoor,et al.  Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration , 2006, Neuron.

[8]  R. Foster,et al.  A novel and ancient vertebrate opsin , 1997, FEBS letters.

[9]  J. Bellingham,et al.  Addition of human melanopsin renders mammalian cells photoresponsive , 2005, Nature.

[10]  K. Deisseroth,et al.  Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri , 2008, Nature Neuroscience.

[11]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Patrick Degenaar,et al.  Micro-LED arrays: a tool for two-dimensional neuron stimulation , 2008 .

[13]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[14]  R. Lund,et al.  Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Weiland,et al.  Retinal prosthesis for the blind. , 2002, Survey of ophthalmology.

[16]  A. Y. Chow,et al.  Implantation of silicon chip microphotodiode arrays into the cat subretinal space , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[17]  Torsten Lehmann,et al.  Advances in Retinal Neuroprosthetics , 2004 .

[18]  Susan Schneider,et al.  Ranibizumab versus verteporfin for neovascular age-related macular degeneration. , 2006, The New England journal of medicine.

[19]  Kwoon Y. Wong,et al.  Induction of photosensitivity by heterologous expression of melanopsin , 2005, Nature.

[20]  Markus Schubert,et al.  Optimizing photodiode arrays for the use as retinal implants , 1999 .

[21]  Mark S Humayun,et al.  Advances in the development of visual prostheses. , 2003, Current opinion in ophthalmology.

[22]  Marta Muñoz,et al.  VA Opsin, Melanopsin, and an Inherent Light Response within Retinal Interneurons , 2003, Current Biology.

[23]  H. M. Petry,et al.  Transplantation of intact sheets of fetal neural retina with its retinal pigment epithelium in retinitis pigmentosa patients. , 2002, American journal of ophthalmology.