Agatha: disentangling periodic signals from correlated noise in a periodogram framework

Periodograms are used as a key significance assessment and visualisation tool to display the significant periodicities in unevenly sampled time series. We introduce a framework of periodograms, called "Agatha", to disentangle periodic signals from correlated noise and to solve the 2-dimensional model selection problem: signal dimension and noise model dimension. These periodograms are calculated by applying likelihood maximization and marginalization and combined in a self-consistent way. We compare Agatha with other periodograms for the detection of Keplerian signals in synthetic radial velocity data produced for the Radial Velocity Challenge as well as in radial velocity datasets of several Sun-like stars. In our tests we find Agatha is able to recover signals to the adopted detection limit of the radial velocity challenge. Applied to real radial velocity, we use Agatha to confirm previous analysis of CoRoT-7 and to find two new planet candidates with minimum masses of 15.1 $M_\oplus$ and 7.08 $M_\oplus$ orbiting HD177565 and HD41248, with periods of 44.5 d and 13.4 d, respectively. We find that Agatha outperforms other periodograms in terms of removing correlated noise and assessing the significances of signals with more robust metrics. Moreover, it can be used to select the optimal noise model and to test the consistency of signals in time. Agatha is intended to be flexible enough to be applied to time series analyses in other astronomical and scientific disciplines. Agatha is available at this http URL

[1]  D. Queloz,et al.  XXXV. The interesting case of HD41248: stellar activity, no planets? , 2014 .

[2]  C. Bailer-Jones The evidence for and against astronomical impacts on climate change and mass extinctions: a review , 2009, International Journal of Astrobiology.

[3]  Ramon Brasser,et al.  TWO SUPER-EARTHS ORBITING THE SOLAR ANALOG HD 41248 ON THE EDGE OF A 7:5 MEAN MOTION RESONANCE , 2013, 1304.7374.

[4]  Andrew Cumming,et al.  The Lick Planet Search: Detectability and Mass Thresholds , 1999 .

[5]  C. Moutou,et al.  Improved stellar parameters of CoRoT-7 A star hosting two super Earths , 2010, 1005.3208.

[6]  James S. Jenkins,et al.  Counting the number of planets around GJ 581. False positive rate of Bayesian signal detection methods , 2012 .

[7]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[8]  Guillem Anglada-Escude,et al.  Filtering out activity-related variations from radial velocities in a search for low-mass planets , 2014, 1405.2016.

[9]  R. P. Butler,et al.  Signals embedded in the radial velocity noise - Periodic variations in the τ Ceti velocities , 2012, 1212.4277.

[10]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[11]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[12]  Ciro Donalek,et al.  A comparison of period finding algorithms , 2013, 1307.2209.

[13]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[14]  A. Collier Cameron,et al.  Planets and Stellar Activity: Hide and Seek in the CoRoT-7 system , 2013, Proceedings of the International Astronomical Union.

[15]  Steven Reece,et al.  A Gaussian process framework for modelling stellar activity signals in radial velocity data , 2015, 1506.07304.

[16]  A. Santerne,et al.  BGLS: A Bayesian formalism for the generalised Lomb-Scargle periodogram , 2014, 1412.0467.

[17]  Gordon A. H. Walker,et al.  LONG-PERIOD RADIAL-VELOCITY VARIATIONS OF ARCTURUS , 1989 .

[18]  Adrian L. Melott,et al.  DO PERIODICITIES IN EXTINCTION—WITH POSSIBLE ASTRONOMICAL CONNECTIONS—SURVIVE A REVISION OF THE GEOLOGICAL TIMESCALE? , 2013, 1307.1884.

[19]  Dae-Won Kim,et al.  Assessment of stochastic and deterministic models of 6304 quasar lightcurves from SDSS Stripe 82 , 2013, 1304.2863.

[20]  Marc Ollivier,et al.  The CoRoT space mission : early results Special feature The CoRoT-7 planetary system : two orbiting super-Earths , 2009 .

[21]  Jacques Laskar,et al.  Radial velocity data analysis with compressed sensing techniques , 2016, 1609.01519.

[22]  Gavin Ramsay,et al.  Continuous `stunted' outbursts detected from the Cataclysmic Variable KIC 9202990 using Kepler data , 2015, 1510.07448.

[23]  et al,et al.  New Debris Disks around Nearby Main-Sequence Stars: Impact on the Direct Detection of Planets , 2006, astro-ph/0611682.

[24]  C. Bailer-Jones,et al.  ASSESSING THE INFLUENCE OF THE SOLAR ORBIT ON TERRESTRIAL BIODIVERSITY , 2013, 1303.6121.

[25]  Roman V. Baluev,et al.  The impact of red noise in radial velocity planet searches: only three planets orbiting GJ 581? , 2012, 1209.3154.

[26]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[27]  G. Basri,et al.  Rotation and differential rotation of active Kepler stars , 2013, 1308.1508.

[28]  X. Dumusque,et al.  Radial Velocity Fitting Challenge. I. Simulating the data set including realistic stellar radial-velocity signals , 2016, 1607.06487.

[29]  A. Cumming Detectability of extrasolar planets in radial velocity surveys , 2004, astro-ph/0408470.

[30]  J. Richards,et al.  ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.

[31]  P. Uttley,et al.  False periodicities in quasar time-domain surveys , 2016, 1606.02620.

[32]  Daniel Foreman-Mackey,et al.  SYSTEMATICS-INSENSITIVE PERIODIC SIGNAL SEARCH WITH K2 , 2015, 1505.07105.

[33]  S. Djorgovski,et al.  A possible close supermassive black-hole binary in a quasar with optical periodicity , 2015, Nature.

[34]  Sanjay Gosain,et al.  A STUDY OF THE HEMISPHERIC ASYMMETRY OF SUNSPOT AREA DURING SOLAR CYCLES 23 AND 24 , 2013 .

[35]  Roman V. Baluev,et al.  Detecting multiple periodicities in observational data with the multifrequency periodogram – I. Analytic assessment of the statistical significance , 2013, 1308.6463.

[36]  Michael Schulz,et al.  REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series , 2002 .

[37]  S. Aigrain,et al.  Radial-velocity fitting challenge - II. First results of the analysis of the data set , 2016, 1609.03674.

[38]  Carl Wunsch,et al.  Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change , 2004 .

[39]  R. Paul Butler,et al.  THE HARPS-TERRA PROJECT. I. DESCRIPTION OF THE ALGORITHMS, PERFORMANCE, AND NEW MEASUREMENTS ON A FEW REMARKABLE STARS OBSERVED BY HARPS , 2012, 1202.2570.

[40]  James S. Jenkins,et al.  THE CURIOUS CASE OF HD 41248. A PAIR OF STATIC SIGNALS BURIED BEHIND RED NOISE , 2014, 1406.3093.

[41]  Zeljko Ivezic,et al.  PERIODOGRAMS FOR MULTIBAND ASTRONOMICAL TIME SERIES , 2015, 1502.01344.

[42]  A. Collier Cameron,et al.  The Sun as a planet-host star: proxies from SDO images for HARPS radial-velocity variations , 2016, 1601.05651.

[43]  Austin,et al.  The M dwarf planet search programme at the ESO VLT + UVES. A search for terrestrial planets in the h , 2009, 0908.0944.

[44]  G. F. Porto de Mello,et al.  Accurate and homogeneous abundance patterns in solar-type stars of the solar neighbourhood: a chemo-chronological analysis , 2012, 1204.4433.

[45]  Tilo Steinmetz,et al.  State of the Field: Extreme Precision Radial Velocities , 2016, 1602.07939.

[46]  Astrophysics,et al.  Systemic: A Testbed for Characterizing the Detection of Extrasolar Planets. I. The Systemic Console Package , 2009, 0907.1675.

[47]  F. Feng,et al.  Evidence for periodicities in the extinction record? Response to Melott & Bambach [arXiv:1307.1884] , 2013 .

[48]  Adrian L. Melott,et al.  An ∼60-Million-Year Periodicity Is Common to Marine 87Sr/86Sr, Fossil Biodiversity, and Large-Scale Sedimentation: What Does the Periodicity Reflect? , 2012, The Journal of geology.

[49]  Guillem Anglada-Escud'e,et al.  A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A - Optimizing data analysis techniques for the detection of multi-planetary systems , 2012, 1206.7118.

[50]  Fabo Feng,et al.  A Goldilocks principle for modelling radial velocity noise , 2016, 1606.05196.

[51]  Daniel Foreman-Mackey,et al.  A SYSTEMATIC SEARCH FOR TRANSITING PLANETS IN THE K2 DATA , 2015, 1502.04715.

[52]  et al,et al.  The CoRoT space mission : early results Special feature Transiting exoplanets from the CoRoT space mission VIII . CoRoT-7 b : the first super-Earth with measured radius , 2009 .

[53]  M. Tuomi Evidence for nine planets in the HD 10180 system , 2012, 1204.1254.

[54]  S. Roberts,et al.  Precise time series photometry for the Kepler-2.0 mission , 2014, 1412.6304.

[55]  Guillem Anglada-Escudé,et al.  Comment on “Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581” , 2015, Science.

[56]  A. Collier Cameron,et al.  Stacked Bayesian general Lomb-Scargle periodogram : identifying stellar activity signals , 2017, 1702.03885.

[57]  Lorraine E. Lisiecki,et al.  Links between eccentricity forcing and the 100,000-year glacial cycle , 2010 .

[58]  Fabo Feng,et al.  Obliquity and precession as pacemakers of Pleistocene deglaciations , 2015, 1505.02183.

[59]  Sallie L. Baliunas,et al.  Objective characterization of stellar activity cycles. I. Methods and solar cycle analyses , 1987 .

[60]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[61]  H. D. Aller,et al.  Statistical analyses of long-term variability of AGN at high radio frequencies , 2007, 0705.3293.

[62]  Jason H. Steffen,et al.  The period ratio distribution of Kepler's candidate multiplanet systems , 2014, 1409.3320.