Anomalous Exponents and Dipole Solutions for the Thin Film Equation

We investigate similarity solutions of the "thin film" equation. In particular we look at solutions on the half-line $x\ge0$ with compact support and zero contact angle boundary conditions in x=0. Such "dipole" solutions feature an anomalous exponent and are therefore called similarity solutions of the second kind. Using a combination of phase space analysis and numerical simulations, we numerically construct trajectories representing these solutions, at the same time obtaining broader insight into the nature of the four-dimensional phase space. Additional asymptotic analysis provides further information concerning the evolution to self-similarity.

[1]  John R. King,et al.  Integral results for nonlinear diffusion equations , 1991 .

[2]  J. King,et al.  Asymptotic behaviour of the thin film equation in bounded domains , 2001, European Journal of Applied Mathematics.

[3]  Francisco Bernis,et al.  Finite speed of propagation for thin viscous flows when 2 ≤ n ≤ 3 , 1996 .

[4]  J. King,et al.  Moving boundary problems and non-uniqueness for the thin film equation , 2001, European Journal of Applied Mathematics.

[5]  M. Bertsch,et al.  Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation , 1995 .

[6]  Charles M. Elliott,et al.  The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature , 1996, European Journal of Applied Mathematics.

[7]  J. Hulshof Some Aspects of the Thin Film Equation , 2001 .

[8]  Andrea L. Bertozzi,et al.  Symmetric Singularity Formation in Lubrication-Type Equations for Interface Motion , 1996, SIAM J. Appl. Math..

[9]  J. Hulshof,et al.  Intermediate asymptotics of the porous medium equation with sign changes , 2001, Advances in Differential Equations.

[10]  Vazquez,et al.  Calculation of anomalous exponents in nonlinear diffusion. , 1994, Physical review letters.

[11]  J. Hulshof,et al.  The thin film equation with $2 \leq n<3$: finite speed of propagation in terms of the $L^1$-norm , 1998 .

[12]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .

[13]  Andrea L. Bertozzi,et al.  Singularities and similarities in interface flows , 1994 .

[14]  Francisco Bernis,et al.  Similarity solutions of a higher order nonlinear diffusion equation , 1991 .

[15]  Francisco Bernis,et al.  Source type solutions of a fourth order nonlinear degenerate parabolic equation , 1992 .

[16]  Juan Luis Vázquez,et al.  Asymptotic behaviour of solutions of the porous medium equation with changing sign , 1991 .

[17]  Andrea L. Bertozzi,et al.  Stable and unstable singularities in the unforced Hele‐Shaw cell , 1996 .

[18]  Francisco Bernis,et al.  Finite speed of propagation and continuity of the interface for thin viscous flows , 1996, Advances in Differential Equations.

[19]  Josephus Hulshof,et al.  Travelling Waves for Fourth Order Parabolic Equations , 2001, SIAM J. Math. Anal..

[20]  Tim G. Myers,et al.  Thin Films with High Surface Tension , 1998, SIAM Rev..

[21]  J. Hulshof,et al.  Travelling waves for fourth-order semilinear parabolic equations , 1999 .

[22]  N. Goldenfeld,et al.  Intermediate asymptotics and renormalization group theory , 1989 .

[23]  L. M. Hocking SLIDING AND SPREADING OF THIN TWO-DIMENSIONAL DROPS , 1981 .

[24]  Fernando Quirós,et al.  The "Linear" Limit of Thin Film Flows as an Obstacle-Type Free Boundary Problem , 2000, SIAM J. Appl. Math..

[25]  D. Aronson The porous medium equation , 1986 .

[26]  John R. King,et al.  Dipoles and similarity solutions of the thin film equation in the half-line , 2000 .

[27]  H. P. Greenspan,et al.  On the motion of a small viscous droplet that wets a surface , 1978, Journal of Fluid Mechanics.