Polo-like Kinase-1 Controls Proteasome-Dependent Degradation of Claspin during Checkpoint Recovery

DNA-damage checkpoints maintain genomic integrity by mediating a cell-cycle delay in response to genotoxic stress or stalled replication forks. In response to damage, the checkpoint kinase ATR phosphorylates and activates its effector kinase Chk1 in a process that critically depends on Claspin . However, it is not known how exactly this kinase cascade is silenced. Here we demonstrate that the abundance of Claspin is regulated through proteasomal degradation. In response to DNA damage, Claspin is transiently stabilized, and its expression depends on Chk1 kinase activity. In addition, we show that Claspin is degraded upon mitotic entry, a process that depends on the beta-TrCP-SCF ubiquitin ligase and Polo-like kinase-1 (Plk1). We demonstrate that Claspin interacts with both beta-TrCP and Plk1 and that inactivation of these components or the beta-TrCP recognition motif in Claspin prevents its mitotic degradation. Interestingly, expression of a nondegradable Claspin mutant inhibits recovery from a DNA-damage-induced checkpoint arrest. Thus, we conclude that Claspin levels are tightly regulated, both during unperturbed cell cycles and after DNA damage. Moreover, our data demonstrate that the degradation of Claspin at the onset of mitosis is an essential step for the recovery of a cell from a DNA-damage-induced cell-cycle arrest.

[1]  A. Kumagai,et al.  Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. , 2000, Molecular cell.

[2]  Hiroyuki Osada,et al.  M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Junjie Chen,et al.  Human Claspin Is Required for Replication Checkpoint Control* , 2003, Journal of Biological Chemistry.

[4]  A. Shevchenko,et al.  Adaptation of a DNA Replication Checkpoint Response Depends upon Inactivation of Claspin by the Polo-like Kinase , 2004, Cell.

[5]  Hiroyuki Osada,et al.  Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. Chini,et al.  Chk1 is required to maintain Claspin stability , 2006, Oncogene.

[7]  J. Haber,et al.  Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. , 2001, Molecular cell.

[8]  R. Medema,et al.  Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. , 2004, Molecular cell.

[9]  B. Stillman,et al.  Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. , 2002, Molecular cell.

[10]  M. Pagano,et al.  Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. V. Vugt,et al.  Checkpoint Adaptation and Recovery: Back with Polo after the Break , 2004, Cell cycle.

[12]  P. Jackson,et al.  Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1. , 2004, Molecular biology of the cell.

[13]  S. Fuchs,et al.  The many faces of β-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer , 2004, Oncogene.