Distortion related to polarization-mode dispersion in analog lightwave systems

Analog transmission in single-mode fiber using chirped sources gives rise to nonlinear distortion when polarization-mode dispersion (PMD) is present. We investigate experimentally and theoretically two mechanisms for this distortion: for chirped sources, PMD in the presence of polarization-mode coupling results in second-order distortion that is proportional to the square of the modulation frequency; when polarization-dependent loss is present, an additional second-order distortion term occurs that is independent of modulation frequency. Both mechanisms give rise to distortion that is time varying due to the sensitivity of PMD to ambient temperature changes. Numerical examples indicate that these effects can limit the capacity of analog systems that use directly modulated semiconductor lasers. >

[1]  N. S. Bergano,et al.  Investigation of polarization dispersion in long lengths of single-mode fiber using multilongitudinal mode lasers , 1987 .

[2]  K. Petermann Nonlinear Transmission Behaviour of a Single-Mode Fiber Transmission Line due to Polarization Coupling , 1981 .

[3]  Leonard J. Cimini,et al.  Preservation of polarisation orthogonality through a linear optical system , 1987 .

[4]  C. R. Giles,et al.  Polarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fiber. , 1988, Optics letters.

[5]  Clinton Randy Giles,et al.  Polarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fiber. , 1988 .

[6]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[7]  J. Nagel,et al.  Dynamical equation for polarization dispersion. , 1991, Optics letters.

[8]  G. E. Bodeep,et al.  Lightwave subcarrier CATV transmission systems , 1990 .

[9]  C. Angelis,et al.  Time evolution of polarization mode dispersion in long terrestrial links , 1992 .

[10]  C. J. Nielsen Influence of polarization-mode coupling on the transmission bandwidth of single-mode fibers , 1982 .

[11]  G. Foschini,et al.  Statistical theory of polarization dispersion in single mode fibers , 1991 .

[12]  D. Marcuse,et al.  Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals , 1991, IEEE Photonics Technology Letters.

[13]  R. E. Wagner,et al.  Phenomenological approach to polarisation dispersion in long single-mode fibres , 1986 .

[14]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[15]  F Matera,et al.  Measurement of the group-delay difference between the principal states of polarization on a low-birefringence terrestrial fiber cable. , 1987, Optics letters.

[16]  Manfred Bertelsmeier,et al.  Linearization of Broadband Optical Transmission Systems by Adaptive Predistortion , 1984 .

[17]  R. M. Derosier,et al.  Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems , 1992, IEEE Photonics Technology Letters.

[18]  N. S. Bergano,et al.  Polarization dispersion and principal states in a 147-km undersea lightwave cable , 1988 .

[19]  Ivan P. Kaminow,et al.  Polarization in optical fibers , 1981 .

[20]  Chin-Lin Chen,et al.  Depolarization in a single-mode optical fiber , 1983 .

[21]  G. Meslener,et al.  Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection , 1984 .

[22]  Ashish M. Vengsarkar,et al.  Optical fiber-based dispersion compensation using higher order modes near cutoff , 1994 .

[23]  A. Chraplyvy,et al.  Fading in lightwave systems due to polarization-mode dispersion , 1990, IEEE Photonics Technology Letters.

[24]  Benedetto Daino,et al.  Statistical treatment of the evolution of the principal states of polarization in single-mode fibers , 1990 .

[25]  E.E. Bergmann,et al.  Dispersion-induced composite second-order distortion at 1.5 mu m , 1991, IEEE Photonics Technology Letters.