Photonic integrated circuits fabricated using ion implantation

Intermixing the wells and barriers of quantum-well (QW) laser heterostructures generally results in an increase in the bandgap energy and is accompanied by changes in the refractive index. A technique, based on ion implantation-induced QW intermixing, has been developed to enhance the quantum-well intermixing (QWI) rate in selected areas of a wafer. Such processes offer the prospect of a powerful and simple fabrication route for the integration of discrete optoelectronic devices and for forming photonic integrated circuits.

[1]  E. Kapon,et al.  Birefringent channel waveguides defined by impurity‐induced superlattice disordering , 1988 .

[3]  Hiroshi Yasaka,et al.  Broader spectral width InGaAsP stacked active layer superluminescent diodes , 1990 .

[4]  I. V. Mitchell,et al.  Ion beam intermixing of semiconductor heterostructures for optoelectronic applications , 1997 .

[5]  D. L. Peterson,et al.  Properties of Ga vacancies in AlGaAs materials , 1989 .

[6]  R. Logan,et al.  Thermal stability of InGaAs/InP quantum well structures grown by gas source molecular beam epitaxy , 1987 .

[7]  D. Ackley,et al.  A strained-layer InGaAs-GaAs-AlGaAs single quantum well broad spectrum LED by selective-area metalorganic chemical vapor deposition , 1994, IEEE Photonics Technology Letters.

[8]  E. Koteles,et al.  Enhanced compositional disordering of quantum wells in GaAs/AlGaAs and InGaAs/GaAs using focused Ga+ ion beams , 1994 .

[9]  I. V. Mitchell,et al.  Compositional disordering of strained InGaAs/GaAs quantum wells by Au implantation: Channeling effects , 1991 .

[10]  A. Pratt,et al.  Indium migration control on patterned substrates for optoelectronic device applications , 1994 .

[11]  E. Koteles,et al.  GaAs/sub 1-x/P/sub x//GaAs quantum-well structures with tensile-strained barriers , 1994 .

[12]  M. Buchanan,et al.  Transparency of band-gap-shifted InGaAsP/InP quantum-well waveguides , 1996 .

[13]  Hiroshi Yasaka,et al.  High‐power, broad‐band InGaAsP superluminescent diode emitting at 1.5 μm , 1990 .

[14]  B. Tell,et al.  Large blueshifting of InGaAs/InP quantum‐well band gaps by ion implantation , 1992 .

[15]  J. Marsh,et al.  Quantum-well laser with integrated passive waveguide fabricated by neutral impurity disordering , 1992, IEEE Photonics Technology Letters.

[16]  O. W. Holland,et al.  Dose rate effects on damage accumulation in Si+‐implanted gallium arsenide , 1991 .

[17]  F. Laruelle,et al.  Focused ion beam channeling effects and ultimate sizes of GaAlAs/GaAs nanostructures , 1990 .

[18]  Emil S. Koteles,et al.  Lateral selectivity of ion-induced quantum well intermixing , 1998 .

[19]  R. Averback,et al.  Temperature dependence of ion-beam mixing in III-V semiconductors , 1995 .

[20]  M. Buchanan,et al.  Quantum-well intermixing for optoelectronic integration using high energy ion implantation , 1995 .

[21]  Thomas L. Paoli,et al.  Stripe‐geometry quantum well heterostructure AlxGa1−xAs‐GaAs lasers defined by defect diffusion , 1986 .

[22]  K. Takada,et al.  New measurement system for fault location in optical waveguide devices based on an interferometric technique. , 1987, Applied optics.

[23]  J. Simmons,et al.  Band gap modification in Ne+-ion implanted In1−xGaxAs/InP and InAsyP1−y/InP quantum well structures , 1997 .

[24]  N. Holonyak,et al.  Implantation disordering of AlxGa1−xAs superlattices , 1985 .

[25]  Ikuo Mito,et al.  1.5 mu m band travelling-wave semiconductor optical amplifiers with window facet structure , 1989 .

[26]  R. Alferness,et al.  Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57‐nm tuning range , 1992 .

[27]  E. Wendler,et al.  Temperature and dose dependence of damage production in Si+ and Se+ implanted InP , 1995 .

[28]  Philip J. Poole,et al.  Quantum well intermixing for the realization of photonic integrated circuits , 1995, Other Conferences.

[29]  P. Galtier,et al.  Ontogenic development of drug-metabolizing enzymes in male chicken liver , 1996 .

[30]  Ion implantation damage of InP and InGaAs , 1995 .

[31]  Kevin F. Brennan,et al.  Quantum Semiconductor Structures , 1992 .

[32]  M. Buchanan,et al.  Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing , 1995 .

[33]  Lester F. Eastman,et al.  Room‐temperature exciton electroabsorption in partially intermixed GaAs/AlGaAs quantum well waveguides , 1989 .

[34]  Chin-Lin Chen,et al.  Fiber-optic gyroscopes with broad-band sources , 1983 .

[35]  P. Demeester,et al.  Side-emitting GaAs/AlGaAs SQW LEDs showing wide spectrum using shadow masked growth , 1992 .

[36]  Emil S. Koteles Methods for monolithically fabricating photonic integrated circuits , 1994, Optics East.

[37]  E. Herbert Li,et al.  Effects of Different Cation and Anion Interdiffusion Rates in Disordered In0.53Ga0.47As/InP Single Quantum Wells , 1995 .

[38]  Mahmoud Fallahi,et al.  Transparent waveguides for WDM transmitter arrays using quantum well shape modification , 1995, Photonics West.

[39]  Amorphization of silicon by elevated temperature ion irradiation , 1995 .

[40]  M. Davies,et al.  The fabrication of a broad-spectrum light-emitting diode using high-energy ion implantation , 1996, IEEE Photonics Technology Letters.

[41]  T. Chong,et al.  Considerations for polarization insensitive optical switching and modulation using strained InGaAs/InAlAs quantum well structure , 1991, IEEE Photonics Technology Letters.

[42]  F. Laruelle,et al.  Optical study of GaAs/GaAlAs quantum structures processed by high energy focused ion beam implantation , 1990 .

[43]  M. Thewalt,et al.  Modification of the shapes of GaAs/AlGaAs quantum wells using rapid thermal annealing , 1989 .

[44]  Philip J. Poole,et al.  Comparative study of laser- and ion implantation-induced quantum well intermixing in GaInAsP/InP microstructures , 1997, Photonics West.

[45]  J. Giérak,et al.  Observation and simulation of focused ion beam induced damage , 1994 .

[46]  Philip J. Poole,et al.  BAND-GAP TUNING OF INGAAS/INGAASP/INP LASER USING HIGH ENERGY ION IMPLANTATION , 1995 .

[47]  Niloy K. Dutta,et al.  Calculation of Auger rates in a quantum well structure and its application to InGaAsP quantum well lasers , 1983 .

[48]  Emil S. Koteles,et al.  High-reliability blue-shifted InGaAsP/InP lasers , 1996 .

[49]  Y. Gao,et al.  Long range disordering of GaAs‐AlGaAs multiquantum wells by isoelectronic antimony implants , 1993 .

[50]  Karl Hess,et al.  Disorder of an AlAs‐GaAs superlattice by impurity diffusion , 1981 .

[51]  B. Weiss,et al.  Effects of interdiffusion on the sub‐band‐edge structure of In0.53Ga0.47As/InP single quantum wells , 1993 .

[52]  M. Buchanan,et al.  Fabrication of nanostructures in strained InGaAs/GaAs quantum wells by focused-ion-beam implantation , 1992 .

[53]  Uziel Koren,et al.  Broadly Tunable InGaAsP/InP Laser Based on a Vertical Coupler Filter with 57nm Tuning Range, , 1992 .

[54]  P. Melman,et al.  Quantum Well Shape Modification in Quaternary Quantum Wells , 1991 .