The language of SH2 domain interactions defines phosphotyrosine‐mediated signal transduction

[1]  张剑,et al.  Communication System , 2022, Wireless Power Transfer Technologies for Electric Vehicles.

[2]  Brett W. Engelmann,et al.  High‐throughput analysis of peptide‐binding modules , 2012, Proteomics.

[3]  L. Cantley,et al.  p85α SH2 domain phosphorylation by IKK promotes feedback inhibition of PI3K and Akt in response to cellular starvation. , 2012, Molecular cell.

[4]  J. Seetharaman,et al.  Structure of a novel phosphotyrosine‐binding domain in Hakai that targets E‐cadherin , 2012, The EMBO journal.

[5]  Brett W. Engelmann,et al.  The SH2 Domain–Containing Proteins in 21 Species Establish the Provenance and Scope of Phosphotyrosine Signaling in Eukaryotes , 2011, Science Signaling.

[6]  C. Bell,et al.  Simultaneous binding of two peptidyl ligands by a SRC homology 2 domain. , 2011, Biochemistry.

[7]  Lewis C. Cantley,et al.  Inhibition of PI3K binding to activators by serine phosphorylation of PI3K regulatory subunit p85α Src homology-2 domains , 2011, Proceedings of the National Academy of Sciences.

[8]  S. Liao,et al.  Solution Structure of Tensin2 SH2 Domain and Its Phosphotyrosine-Independent Interaction with DLC-1 , 2011, PloS one.

[9]  Otto Hudecz,et al.  Spatial Exclusivity Combined with Positive and Negative Selection of Phosphorylation Motifs Is the Basis for Context-Dependent Mitotic Signaling , 2011, Science Signaling.

[10]  Roger L. Williams,et al.  Structure of Lipid Kinase p110β/p85β Elucidates an Unusual SH2-Domain-Mediated Inhibitory Mechanism , 2011, Molecular cell.

[11]  Kumaran Kandasamy,et al.  Identification of Novel Phosphorylation Motifs Through an Integrative Computational and Experimental Analysis of the Human Phosphoproteome. , 2011, Journal of proteomics & bioinformatics.

[12]  Luisa Montecchi-Palazzi,et al.  Combining peptide recognition specificity and context information for the prediction of the 14‐3‐3‐mediated interactome in S. cerevisiae and H. sapiens , 2011, Proteomics.

[13]  Shili Duan,et al.  Recognition and Specificity Determinants of the Human Cbx Chromodomains* , 2010, The Journal of Biological Chemistry.

[14]  S. Eschrich,et al.  Characterizing Tyrosine Phosphorylation Signaling in Lung Cancer Using SH2 Profiling , 2010, PloS one.

[15]  Tony Pawson,et al.  Phosphotyrosine Signaling: Evolving a New Cellular Communication System , 2010, Cell.

[16]  Brett W. Engelmann,et al.  SH2 Domains Recognize Contextual Peptide Sequence Information to Determine Selectivity* , 2010, Molecular & Cellular Proteomics.

[17]  B. Zhao,et al.  Loops Govern SH2 Domain Specificity by Controlling Access to Binding Pockets , 2010, Science Signaling.

[18]  R. Joseph,et al.  Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCγ1 , 2009, Proceedings of the National Academy of Sciences.

[19]  T. Pawson,et al.  Cell Signaling in Space and Time: Where Proteins Come Together and When They’re Apart , 2009, Science.

[20]  I. Lax,et al.  The Selectivity of Receptor Tyrosine Kinase Signaling Is Controlled by a Secondary SH2 Domain Binding Site , 2009, Cell.

[21]  J. Naismith,et al.  Crystal structure of the tyrosine phosphatase Cps4B from Steptococcus pneumoniae TIGR4 in complex with phosphate. , 2009 .

[22]  P. Bork,et al.  Linear Motif Atlas for Phosphorylation-Dependent Signaling , 2008, Science Signaling.

[23]  Patrick Aloy,et al.  Contextual Specificity in Peptide-Mediated Protein Interactions , 2008, PloS one.

[24]  Tony Pawson,et al.  Defining the Specificity Space of the Human Src Homology 2 Domain*S , 2008, Molecular & Cellular Proteomics.

[25]  H. Christofk,et al.  Pyruvate kinase M2 is a phosphotyrosine-binding protein , 2008, Nature.

[26]  G. Guy,et al.  Structural basis for a novel intrapeptidyl H‐bond and reverse binding of c‐Cbl‐TKB domain substrates , 2008, The EMBO journal.

[27]  R. Klemke,et al.  PhosphoBlast, a Computational Tool for Comparing Phosphoprotein Signatures among Large Datasets*S , 2008, Molecular & Cellular Proteomics.

[28]  Tony Pawson,et al.  NetworKIN: a resource for exploring cellular phosphorylation networks , 2007, Nucleic Acids Res..

[29]  Allegra Via,et al.  Phospho.ELM: a database of phosphorylation sites—update 2008 , 2007, Nucleic Acids Res..

[30]  M. Mann,et al.  PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites , 2007, Genome Biology.

[31]  Jiunn R Chen,et al.  PDZ Domain Binding Selectivity Is Optimized Across the Mouse Proteome , 2007, Science.

[32]  Tony Pawson,et al.  High-throughput phosphotyrosine profiling using SH2 domains. , 2007, Molecules and Cells.

[33]  S. Martin,et al.  Structural and energetic aspects of Grb2-SH2 domain-swapping. , 2007, Archives of biochemistry and biophysics.

[34]  K. Ogura,et al.  Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK , 2007, Nature Structural &Molecular Biology.

[35]  John Kuriyan,et al.  Structural Basis for the Inhibition of Tyrosine Kinase Activity of ZAP-70 , 2007, Cell.

[36]  S. Lo,et al.  The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1 , 2007, The Journal of cell biology.

[37]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[38]  S. Hubbard,et al.  Structural basis for phosphotyrosine recognition by the Src homology-2 domains of the adapter proteins SH2-B and APS. , 2006, Journal of molecular biology.

[39]  Martin Zacharias,et al.  Sequence Specificity of SHP-1 and SHP-2 Src Homology 2 Domains , 2006, Journal of Biological Chemistry.

[40]  T. Pawson,et al.  The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. , 2006, Molecular cell.

[41]  Gavin MacBeath,et al.  A quantitative protein interaction network for the ErbB receptors using protein microarrays , 2006, Nature.

[42]  S. Hubbard,et al.  Structural basis for inhibition of the insulin receptor by the adaptor protein Grb14. , 2005, Molecular cell.

[43]  S. Hubbard,et al.  Structural Characterization of a Novel Cbl Phosphotyrosine Recognition Motif in the APS Family of Adapter Proteins* , 2005, Journal of Biological Chemistry.

[44]  C. Benes,et al.  The C2 Domain of PKCδ Is a Phosphotyrosine Binding Domain , 2005, Cell.

[45]  S. Shoelson,et al.  Kinase Activation through Dimerization by Human SH2-B , 2005, Molecular and Cellular Biology.

[46]  C. Benes,et al.  The C2 domain of PKCdelta is a phosphotyrosine binding domain. , 2005, Cell.

[47]  S. Shoelson,et al.  A phenylalanine zipper mediates APS dimerization , 2004, Nature Structural &Molecular Biology.

[48]  Nikolaj Blom,et al.  Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins , 2004, BMC Bioinformatics.

[49]  J. Kornhauser,et al.  PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation , 2004, Proteomics.

[50]  Tony Pawson,et al.  Specificity in Signal Transduction From Phosphotyrosine-SH2 Domain Interactions to Complex Cellular Systems , 2004, Cell.

[51]  S. Hubbard,et al.  Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor. , 2003, Molecular cell.

[52]  Michael B. Yaffe,et al.  Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs , 2003, Nucleic Acids Res..

[53]  T. Pawson,et al.  Assembly of Cell Regulatory Systems Through Protein Interaction Domains , 2003, Science.

[54]  Tony Pawson,et al.  Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Tony Pawson,et al.  A ‘three‐pronged’ binding mechanism for the SAP/SH2D1A SH2 domain: structural basis and relevance to the XLP syndrome , 2002, The EMBO journal.

[56]  C Terhorst,et al.  Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. , 1999, Molecular cell.

[57]  Michael J. Eck,et al.  Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase , 1999, Nature.

[58]  S. Shoelson,et al.  Crystal Structure of the Tyrosine Phosphatase SHP-2 , 1998, Cell.

[59]  John Kuriyan,et al.  Crystal structure of the Src family tyrosine kinase Hck , 1997, Nature.

[60]  T. Pawson,et al.  A Potential SH3 Domain-binding Site in the Crk SH2 Domain* , 1996, The Journal of Biological Chemistry.

[61]  P. Furet,et al.  Modulation of the SH2 Binding Specificity and Kinase Activity of Src by Tyrosine Phosphorylation within Its SH2 Domain (*) , 1996, The Journal of Biological Chemistry.

[62]  J Wagner,et al.  Phosphotyrosine-independent Binding of SHC to the NPLH Sequence of Murine Protein-tyrosine Phosphatase-PEST , 1996, The Journal of Biological Chemistry.

[63]  C. Turck,et al.  PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. , 1995, Science.

[64]  A. Ducruix,et al.  Crystal structure of the mammalian Grb2 adaptor. , 1995, Science.

[65]  T Pawson,et al.  Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav , 1994, Molecular and cellular biology.

[66]  H. Varmus,et al.  Binding of the Src SH2 domain to phosphopeptides is determined by residues in both the SH2 domain and the phosphopeptides , 1993, Molecular and cellular biology.

[67]  J. Kuriyan,et al.  Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: Crystal structures of the complexed and peptide-free forms , 1993, Cell.

[68]  T. Pawson,et al.  SH2 domains recognize specific phosphopeptide sequences , 1993, Cell.

[69]  D. Baltimore,et al.  Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides , 1993, Nature.

[70]  T. Pawson,et al.  SH2 and SH3 domains: From structure to function , 1992, Cell.

[71]  B. Mayer,et al.  A novel viral oncogene with structural similarity to phospholipase C , 1988, Nature.

[72]  T. Pawson,et al.  A conserved domain regulates interactions of the v-fps protein-tyrosine kinase with the host cell. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[73]  T Pawson,et al.  A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps , 1986, Molecular and cellular biology.