Unconventional Methods of Preserving Meat Products and Their Impact on Health and the Environment

A dual objective of food storage is to retain nutritional value and safe consumption over time. As supply chains have globalized, food protection and preservation methods have advanced. However, increasing demands to cater for larger volumes and for more effective food storage call for new technologies. This paper examines promising meat preservation methods, including high pressure process, ultrasounds, pulsating electric and magnetic field, pulsed light and cold plasma. These methods not only make it possible to obtain meat and meat products with a longer shelf life, safer for health and without preservatives, but also are more environment-friendly in comparison with traditional methods. With the use of alternative methods, it is possible to obtain meat products that are microbiologically safer, whilst also high quality and free from chemical additives. Moreover, these new technologies are also more ecological, do not require large quantities of energy or water, and generate less waste.

[1]  P. Murányi,et al.  Inactivation of Listeria innocua on packaged meat products by pulsed light , 2019, Food Packaging and Shelf Life.

[2]  J. Lorenzo,et al.  Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life , 2019, Trends in Food Science & Technology.

[3]  Z. Bhat,et al.  Current and future prospects for the use of pulsed electric field in the meat industry , 2019, Critical reviews in food science and nutrition.

[4]  C. Wiacek,et al.  Pulsed light treatment for the reduction of Salmonella Typhimurium and Yersinia enterocolitica on pork skin and pork loin. , 2019, International journal of food microbiology.

[5]  H. Ramaswamy,et al.  Pulsed light technology to enhance food safety and quality: a mini-review , 2018, Current Opinion in Food Science.

[6]  I. Oey,et al.  Pulsed electric field processing reduces the oxalate content of oca (Oxalis tuberosa) tubers while retaining starch grains and the general structural integrity of tubers. , 2018, Food chemistry.

[7]  Alaa El-Din A. Bekhit,et al.  A review of sublethal effects of pulsed electric field on cells in food processing , 2018 .

[8]  Cheorun Jo,et al.  The use of atmospheric pressure plasma as a curing process for canned ground ham. , 2018, Food chemistry.

[9]  J. Haugen,et al.  Chicken fillets subjected to UV‐C and pulsed UV light: Reduction of pathogenic and spoilage bacteria, and changes in sensory quality , 2017, Journal of food safety.

[10]  Chaitanya Sarangapani,et al.  Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. , 2017, Food chemistry.

[11]  Michiel Schotten,et al.  A Brief History of Scopus: The World’s Largest Abstract and Citation Database of Scientific Literature , 2017 .

[12]  L. Paniwnyk Applications of ultrasound in processing of liquid foods: A review. , 2017, Ultrasonics sonochemistry.

[13]  K. Keener,et al.  Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma , 2017, Food and Bioprocess Technology.

[14]  C. Jo,et al.  Applications of cold plasma technology for microbiological safety in meat industry , 2017 .

[15]  Haiying Cui,et al.  Promoting anti‐listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist , 2017 .

[16]  K. Keener,et al.  The Effect of High-Voltage Atmospheric Cold Plasma Treatment on the Shelf-Life of Distillers Wet Grains , 2017, Food and Bioprocess Technology.

[17]  W. Choe,et al.  Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment , 2017 .

[18]  Tracy Matthews,et al.  LibGuides: Web of Science platform: Web of Science: Summary of Coverage , 2016 .

[19]  Wiesława Kuźniar,et al.  Konsumenci wobec bezpiecznych rozwiązań w zakresie produkcji żywności , 2016, Zeszyty Naukowe SGGW w Warszawie - Problemy Rolnictwa Światowego.

[20]  Jianhao Zhang,et al.  Inactivation of Spoilage Bacteria in Package by Dielectric Barrier Discharge Atmospheric Cold Plasma—Treatment Time Effects , 2016, Food and Bioprocess Technology.

[21]  K. Skryplonek Zimna plazma, jako niekonwencjonalna metoda utrwalania żywności , 2016 .

[22]  M. Mutlu,et al.  A New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma , 2016, Food and Bioprocess Technology.

[23]  Fernando Morais Rodrigues,et al.  Alternatives to reduce sodium in processed foods and the potential of high pressure technology , 2015 .

[24]  Hana Souskova,et al.  Nonthermal plasma--A tool for decontamination and disinfection. , 2015, Biotechnology advances.

[25]  T J Mason,et al.  Power ultrasound in meat processing. , 2015, Meat science.

[26]  W. Płocharski,et al.  Możliwości zastosowania ultradźwięków w przemyśle owocowo-warzywnym , 2015 .

[27]  W. Choe,et al.  Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes. , 2015, Food microbiology.

[28]  M. Kubiak,et al.  Pakowanie żywności - przykładowe rozwiązania , 2015 .

[29]  Francesco Noci,et al.  Effect of pulsed electric field treatments at various stages during conditioning on quality attributes of beef longissimus thoracis et lumborum muscle. , 2015, Meat science.

[30]  P. Butz,et al.  Process-induced undesirable compounds: chances of non-thermal approaches. , 2014, Meat science.

[31]  Agnieszka Wierzbicka,et al.  Charakterystyka wybranych systemów pakowania mięsa w odniesieniu do preferencji konsumentów i aspektów ekonomicznych , 2014 .

[32]  Farhan Saeed,et al.  Recent Developments in Minimal Processing: A Tool to Retain Nutritional Quality of Food , 2014, Critical reviews in food science and nutrition.

[33]  L. Woźniak,et al.  Wysokie ciśnienia w przemyśle owocowo-warzywnym , 2014 .

[34]  Ewa Brychcy,et al.  Effect of low-pressure cold plasma on surface microflora of meat and quality attributes , 2015, Journal of Food Science and Technology.

[35]  E. Barroso,et al.  Use of pulsed light to increase the safety of ready-to-eat cured meat products , 2013 .

[36]  G. Ripoll,et al.  Instrumental meat quality of veal calves reared under three management systems and color evolution of meat stored in three packaging systems. , 2013, Meat science.

[37]  D. Witrowa-Rajchert,et al.  Możliwości zastosowania niskotemperaturowej plazmy w technologii żywności , 2013 .

[38]  Petru Alexe,et al.  NON-THERMAL NOVEL FOOD PROCESSING TECHNOLOGIES. AN OVERVIEW , 2013 .

[39]  Yves Arcand,et al.  Current Trends in Green Technologies in Food Production and Processing , 2013, Food Engineering Reviews.

[40]  V. Orlien,et al.  Reduction of salt in pork sausages by the addition of carrot fibre or potato starch and high pressure treatment. , 2012, Meat science.

[41]  Oliver Schlüter,et al.  Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes , 2012 .

[42]  P. Picouet,et al.  High pressure processing of dry-cured ham: Ultrastructural and molecular changes affecting sodium and water dynamics , 2012 .

[43]  E. Barroso,et al.  Pulsed light treatment for the inactivation of selected pathogens and the shelf-life extension of beef and tuna carpaccio. , 2012, International journal of food microbiology.

[44]  K. Knoerzer,et al.  Evaluation of methods for determining food surface temperature in the presence of low-pressure cool plasma , 2012 .

[45]  Susanne Knøchel,et al.  Cold atmospheric pressure plasma treatment of ready-to-eat meat: inactivation of Listeria innocua and changes in product quality. , 2012, Food microbiology.

[46]  Enrique Ortega-Rivas,et al.  Non-thermal Food Engineering Operations , 2012 .

[47]  N. Shearer,et al.  Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. , 2012, International journal of food microbiology.

[48]  Gregory Fridman,et al.  Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica. , 2012, Journal of food protection.

[49]  Adriana Laca,et al.  Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. , 2011, Food microbiology.

[50]  J. A. Ordóñez,et al.  Efficacy of pulsed light for shelf-life extension and inactivation of Listeria monocytogenes on ready-to-eat cooked meat products , 2011 .

[51]  Farid Chemat,et al.  Applications of ultrasound in food technology: Processing, preservation and extraction. , 2011, Ultrasonics sonochemistry.

[52]  A. H. Sørensen,et al.  Inactivation of pathogens on pork by steam-ultrasound treatment. , 2011, Journal of food protection.

[53]  W. Choe,et al.  Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. , 2011, Food microbiology.

[54]  Olga Martín-Belloso,et al.  Combination of Pulsed Electric Fields with Other Preservation Techniques , 2011 .

[55]  J. Ye Hydrodynamic pressure processing to improve meat quality and safety , 2011 .

[56]  E. Białecka-Florjańczyk,et al.  Ultradźwięki – narzędzie do inaktywacji komórek drożdży oraz izolacji białek wewnątrzkomórkowych , 2011 .

[57]  Marco Campus,et al.  High Pressure Processing of Meat, Meat Products and Seafood , 2010 .

[58]  X. Xu,et al.  Preservation technologies for fresh meat - a review. , 2010, Meat science.

[59]  A. Verma,et al.  Dietary fibre as functional ingredient in meat products: a novel approach for healthy living — a review , 2010, Journal of food science and technology.

[60]  A. Bayındırlı,et al.  Evaluation of high pressure pretreatment for enhancing the drying rates of carrot, apple, and green bean. , 2010 .

[61]  K. Kniel,et al.  Fate of Escherichia coli O157:H7 in ground beef following high‐pressure processing and freezing , 2010, Journal of applied microbiology.

[62]  Y. Pyun,et al.  Germination and subsequent inactivation of Bacillus subtilis spores by pulsed electric field treatment. , 2010 .

[63]  A. Proctor Alternatives to Conventional Food Processing , 2010 .

[64]  J. A. Ordóñez,et al.  Pulsed light inactivation of Listeria monocytogenes through different plastic films. , 2009, Foodborne pathogens and disease.

[65]  N. Rastogi Opportunities and Challenges in Nonthermal Processing of Foods , 2009 .

[66]  V. Puri,et al.  Inactivation of Listeria monocytogenes on unpackaged and vacuum-packaged chicken frankfurters using pulsed UV-light. , 2009, Journal of food science.

[67]  N. Grébol,et al.  Efficiency of high hydrostatic pressure at 600 MPa against food-borne microorganisms by challenge tests on convenience meat products , 2009 .

[68]  F. Harte,et al.  Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices using high pressure homogenization and nisin. , 2009, International journal of food microbiology.

[69]  C. Moraru,et al.  Reduction of Listeria on ready-to-eat sausages after exposure to a combination of pulsed light and nisin. , 2009, Journal of food protection.

[70]  K. Tomczuk,et al.  Wpływ wysokich ciśnień na przeżywalność drobnoustrojów , 2009 .

[71]  Gemma Oms-Oliu,et al.  Pulsed Light Treatments for Food Preservation. A Review , 2010 .

[72]  Kenneth W McMillin,et al.  Where is MAP Going? A review and future potential of modified atmosphere packaging for meat. , 2008, Meat science.

[73]  Sueli Rodrigues,et al.  Ultrasound as pre-treatment for drying of pineapple. , 2008, Ultrasonics sonochemistry.

[74]  M. S. Brewer,et al.  EFFECT OF HIGH‐INTENSITY PULSED ELECTRIC FIELDS ON SURVIVAL OF ESCHERICHIA COLI K‐12 SUSPENDED IN MEAT INJECTION SOLUTIONS , 2007 .

[75]  Frank Devlieghere,et al.  Pulsed light for food decontamination: a review , 2007 .

[76]  N Orange,et al.  Pulsed-light system as a novel food decontamination technology: a review. , 2007, Canadian journal of microbiology.

[77]  B. Bhandari,et al.  Effect of high power ultrasound and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. , 2007, Meat science.

[78]  I. Kłoczko,et al.  Proba zastosowania wysokich cisnien hydrostatycznych [UHP] do dekontaminacji miesa zarazonego larwami wlosnia [Trichinella spiralis] , 2007 .

[79]  J. Mroczek,et al.  Perspektywy techniki wysokich cisnien w przemysle spozywczym , 2006 .

[80]  M. Kozłowska,et al.  Mozliwosci zastosowania ultradzwiekow w przetworstwie miesa. Czesc I. Wplyw ultradzwiekow na kruchosc miesa, strukture tkanki lacznej i miesniowej , 2006 .

[81]  J. Mroczek,et al.  Zastosowanie techniki wysokich cisnien w technologii zywnosci, a szczegolnie w przetworstwie miesa , 2006 .

[82]  E. Hać-Szymańczuk,et al.  Applying high pressure techniques in food technology, and meat processing in particular. , 2006 .

[83]  F. Devlieghere,et al.  Factors affecting the inactivation of micro‐organisms by intense light pulses , 2005, Journal of applied microbiology.

[84]  Volker Heinz,et al.  Overview of Pulsed Electric Fields Processing for Food , 2005 .

[85]  L. Palmieri,et al.  High Intensity Pulsed Light Technology , 2005 .

[86]  Bhesh Bhandari,et al.  Effect of High Power Ultrasound Waves on Properties of Meat: A Review , 2004 .

[87]  R. Vogel,et al.  Pressure Inactivation of Bacillus Endospores , 2004, Applied and Environmental Microbiology.

[88]  G. Barbosa‐Cánovas,et al.  Present Status and the Future of PEF Technology , 2004 .

[89]  L. Skibsted,et al.  Oxidative stability of chilled pork chops following long term freeze storage. , 2004, Meat science.

[90]  H. Ramaswamy,et al.  Novel Processing Technologies for Food Preservation , 2004 .

[91]  K. Hashiba,et al.  Inactivation of Saccharomyces cerevisiae by ultrasonic irradiation. , 2004, Ultrasonics sonochemistry.

[92]  N. K. Rastogi,et al.  Application of High-Intensity Pulsed Electrical Fields in Food Processing , 2003 .

[93]  J. Sheridan,et al.  The ineffectiveness of organic acids, freezing and pulsed electric fields to control Escherichia coli O157:H7 in beef burgers , 2002, Letters in applied microbiology.

[94]  S. J. MacGregor,et al.  Pulsed-Light Inactivation of Food-Related Microorganisms , 1999, Applied and Environmental Microbiology.

[95]  E. Boistier-Marquis,et al.  Applications des ultrasons de puissance en industries alimentaires , 1999 .

[96]  James G. Lyng,et al.  The effect on aspects of beef tenderness of pre‐ and post‐rigor exposure to a high intensity ultrasound probe , 1998 .

[97]  James G. Lyng,et al.  THE INFLUENCE OF HIGH INTENSITY ULTRASOUND BATHS ON ASPECTS OF BEEF TENDERNESS , 1997 .

[98]  M. Dikeman,et al.  The effect of low-intensity ultrasound treatment on shear properties, color stability and shelf-life of vacuum-packaged beef semitendinosus and biceps femoris muscles. , 1997, Meat science.

[99]  S Y Ho,et al.  Electroporation of cell membranes: a review. , 1996, Critical reviews in biotechnology.

[100]  J. Claude Cheftel,et al.  Review : High-pressure, microbial inactivation and food preservation , 1995 .

[101]  Howell Roberts,et al.  A HISTORY OF MILLING , 1991 .

[102]  R. T. Roberts SOUND FOR PROCESSING FOOD , 1991 .

[103]  T. H. Allegri The Code of Federal Regulations , 1986 .