Intermolecular interaction energies by topologically partitioned electric properties II. Dispersion energies in one-centre and multicentre multipole expansions

Multicentre multipole expansions in principle should allow one to solve theshape' con- vergence problem arising in the calculation of long-range interaction energies between large non-spherical molecules via point-multipole expansions. In part I of this series (1996, Molec. Phys., 88, 69) it was shown that this indeed is the case for ® rst-order electrostatic and second- order induction energies when employing distributed multipole moments and static polar- izabilities generated from the topological partitioning of the molecular volume as provided by Bader'satoms-in-molecules' theory. Their generalization to frequency-dependent, topologically partitioned polarizabilities is used in the present contribution to compare the convergence behaviour of one-centre and multicentre multipole expansions of the second- order dispersion energy for homomolecular dimers of the water, carbon monoxide, cyanogen and urea molecules. The ® ndings are similar to those for the induction energy; the radial `extension' convergence problem, which already exists for point-multipole expanded inter- action energies between atoms, necessarily persists, but the angular convergence problems linked to the shape of the interacting molecules can successfully be treated by multicentre multipole expansions of the dispersion energy.

[1]  Christof Hättig,et al.  Recurrence relations for the direct calculation of spherical multipole interaction tensors and Coulomb-type interaction energies , 1996 .

[2]  W. J. Orville-Thomas Atoms in Molecules — a Quantum Theory , 1996 .

[3]  M. Szczęśniak,et al.  Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations , 1994 .

[4]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[5]  B. A. Hess,et al.  Distributed polarizabilities using the topological theory of atoms in molecules , 1994 .

[6]  B. A. Hess,et al.  Calculation of orientation-dependent double-tensor moments for Coulomb-type intermolecular interactions , 1994 .

[7]  Richard J. Wheatley,et al.  Gaussian multipole functions for describing molecular charge distributions , 1993 .

[8]  A. Stone,et al.  Practical schemes for distributed polarizabilities , 1993 .

[9]  V. Kellö,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[10]  R. Bader,et al.  A quantum theory of molecular structure and its applications , 1991 .

[11]  P. Wormer,et al.  Correlated van der Waals coefficients for dimers consisting of He, Ne, H2, and N2 , 1988 .

[12]  P. Claverie,et al.  The exact multicenter multipolar part of a molecular charge distribution and its simplified representations , 1988 .

[13]  R. K. McMullan,et al.  The crystal structure and molecular thermal motion of urea at 12, 60 and 123 K from neutron diffraction , 1984 .

[14]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[15]  P. Wormer,et al.  Time‐dependent coupled Hartree–Fock calculations of multipole polarizabilities and dispersion interactions in van der Waals dimers consisting of He, H2, Ne, and N2 , 1983 .

[16]  Raymond A. Poirier,et al.  Cumulative atomic multipole representation of the molecular charge distribution and its basis set dependence , 1983 .

[17]  Friedrich Biegler-König,et al.  Calculation of the average properties of atoms in molecules. II , 1982 .

[18]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[19]  R. Feltgen Potential model for the interaction of two like S state atoms involving spin symmetry , 1981 .

[20]  J. Cizek,et al.  Asymptotic behavior of the ground-state-energy expansion for H/sub 2/ /sup +/ in terms of internuclear separation , 1980 .

[21]  J. D. Morgan,et al.  Behavior of molecular potential energy curves for large nuclear separations , 1980 .

[22]  É. Brézin,et al.  Expansion of the H+2 ground state energy in inverse powers of the distance between the two protons , 1979 .

[23]  L. Piela,et al.  Invariance properties of the multipole expansion with respect to the choice of the coordinate system , 1979 .

[24]  William F. Murphy,et al.  The Rayleigh depolarization ratio and rotational Raman spectrum of water vapor and the polarizability components for the water molecule , 1977 .

[25]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[26]  R. Ahlrichs Convergence properties of the intermolecular force series (1/R-expansion) , 1976 .

[27]  R. T. Pack van der Waals coefficients through C8 for atom–linear molecule interactions. I. CO2–noble gas systems , 1976 .

[28]  W. S. Benedict,et al.  Rotation‐Vibration Spectra of Deuterated Water Vapor , 1956 .

[29]  A. Dalgarno,et al.  The exact calculation of long-range forces between atoms by perturbation theory , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[31]  Z. Maksić,et al.  Theoretical Models of Chemical Bonding , 1991 .

[32]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[33]  R. Young Divergence of the R−1 expansion for the second‐order H–H interaction , 1975 .