Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3β signaling

[1]  D. Greiner,et al.  Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. , 2011, Antioxidants & redox signaling.

[2]  Z. Zuo,et al.  Hyperglycemia Inhibits Anesthetic-induced Postconditioning in the Rabbit Heart via Modulation of Phosphatidylinositol-3-kinase/Akt and Endothelial Nitric Oxide Synthase Signaling , 2010, Journal of cardiovascular pharmacology.

[3]  P. Pratt,et al.  Hyperglycemia Adversely Modulates Endothelial Nitric Oxide Synthase during Anesthetic Preconditioning through Tetrahydrobiopterin– and Heat Shock Protein 90–mediated Mechanisms , 2010, Anesthesiology.

[4]  Y. Kwak,et al.  Diabetes mellitus mitigates cardioprotective effects of remifentanil preconditioning in ischemia-reperfused rat heart in association with anti-apoptotic pathways of survival. , 2010, European journal of pharmacology.

[5]  F. Tréguer,et al.  Myocardial reperfusion injury management: erythropoietin compared with postconditioning. , 2009, American journal of physiology. Heart and circulatory physiology.

[6]  G. Heusch No risk, no ... cardioprotection? A critical perspective. , 2009, Cardiovascular research.

[7]  K. Shimamoto,et al.  Endoplasmic Reticulum Stress in Diabetic Hearts Abolishes Erythropoietin-Induced Myocardial Protection by Impairment of Phospho–Glycogen Synthase Kinase-3β–Mediated Suppression of Mitochondrial Permeability Transition , 2009, Diabetes.

[8]  G. Simard,et al.  Effects of the cannabinoid CB1 antagonist rimonabant on hepatic mitochondrial function in rats fed a high-fat diet. , 2009, American journal of physiology. Endocrinology and metabolism.

[9]  Derek M. Yellon,et al.  The cannabinoid CB1 receptor antagonist, rimonabant, protects against acute myocardial infarction , 2009, Basic Research in Cardiology.

[10]  R. Cooksey,et al.  Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. , 2009, Cardiovascular research.

[11]  H. Katus,et al.  Effect of insulin and glucose infusion on myocardial infarction size in uraemic rats , 2009, Basic Research in Cardiology.

[12]  G. Heusch,et al.  Ischemic Postconditioning in Pigs: No Causal Role for Risk Activation , 2008, Circulation research.

[13]  G. Heusch,et al.  Cardioprotection: nitric oxide, protein kinases, and mitochondria. , 2008, Circulation.

[14]  R. Strasser,et al.  Cardioprotection by Postconditioning Is Lost in WOKW Rats With Metabolic Syndrome: Role of Glycogen Synthase Kinase 3β , 2008, Journal of cardiovascular pharmacology.

[15]  D. Yellon,et al.  Erythropoietin: ready for prime-time cardioprotection. , 2008, Trends in pharmacological sciences.

[16]  G. Bhamra,et al.  Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening , 2008, Basic Research in Cardiology.

[17]  P. Ferdinandy,et al.  Interaction of Cardiovascular Risk Factors with Myocardial Ischemia/Reperfusion Injury, Preconditioning, and Postconditioning , 2007, Pharmacological Reviews.

[18]  A. Ceylan-isik,et al.  Cod liver oil supplementation improves cardiovascular and metabolic abnormalities in streptozotocin diabetic rats , 2007, The Journal of pharmacy and pharmacology.

[19]  K. Shimamoto,et al.  Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection. , 2007, Journal of molecular and cellular cardiology.

[20]  A. Hsu,et al.  Diabetes Abolishes Morphine-Induced Cardioprotection via Multiple Pathways Upstream of Glycogen Synthase Kinase-3β , 2007, Diabetes.

[21]  N. Yazıhan,et al.  Erythropoietin changes contractility, cAMP, and nitrite levels of isolated rat hearts. , 2006, The journal of physiological sciences : JPS.

[22]  E. Falk,et al.  Size of myocardial infarction induced by ischaemia/reperfusion is unaltered in rats with metabolic syndrome. , 2006, Clinical science.

[23]  R. Mueller,et al.  Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3beta. , 2006, Journal of molecular and cellular cardiology.

[24]  P. Faure,et al.  Fructose-Fed Rat Hearts are Protected Against Ischemia-Reperfusion Injury , 2006, Experimental biology and medicine.

[25]  M. Arcasoy,et al.  Mechanisms of erythropoietin‐mediated cardioprotection during ischemia‐reperfusion injury: role of protein kinase C and phosphatidylinositol 3‐kinase signaling , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  M. Mocanu,et al.  Preconditioning the diabetic heart: the importance of Akt phosphorylation. , 2005, Diabetes.

[27]  M. Duchen,et al.  Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. , 2005, American journal of physiology. Heart and circulatory physiology.

[28]  D. Yellon,et al.  Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo , 2005, Basic Research in Cardiology.

[29]  K. Pritchard,et al.  Erythropoietin protects the infant heart against ischemia–reperfusion injury by triggering multiple signaling pathways , 2005, Basic Research in Cardiology.

[30]  D. Yellon,et al.  The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. , 2005, Trends in cardiovascular medicine.

[31]  H. Bøtker,et al.  Ischaemic preconditioning does not protect the heart in obese and lean animal models of Type 2 diabetes , 2004, Diabetologia.

[32]  R. Henning,et al.  Timing of Erythropoietin Treatment for Cardioprotection in Ischemia/Reperfusion , 2004, Journal of cardiovascular pharmacology.

[33]  G. Wright,et al.  Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia‐reperfusion injury , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  E. Olson,et al.  Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore , 2004 .

[35]  D. Yellon,et al.  New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. , 2004, Cardiovascular research.

[36]  J. Jordan,et al.  Fructose-Fed Rats Are Protected against Ischemia/Reperfusion Injury , 2003, Journal of Pharmacology and Experimental Therapeutics.

[37]  A. D. Black,et al.  Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. , 2003, Biochemical and biophysical research communications.

[38]  F. Porteu,et al.  Activation of the Mitogen-activated Protein Kinases Erk1/2 by Erythropoietin Receptor via a Gi Protein βγ-Subunit-initiated Pathway* , 2003, The Journal of Biological Chemistry.

[39]  Pietro Ghezzi,et al.  Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Katsuya Tanaka,et al.  Isoflurane-induced preconditioning is attenuated by diabetes. , 2002, American journal of physiology. Heart and circulatory physiology.

[41]  K. Clarke,et al.  Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the zucker Fatty rat heart. , 2002, Diabetes.

[42]  E. Murphy,et al.  Phosphorylation of Glycogen Synthase Kinase-3&bgr; During Preconditioning Through a Phosphatidylinositol-3-Kinase–Dependent Pathway Is Cardioprotective , 2002, Circulation research.

[43]  P. Pagel,et al.  Hyperglycemia Prevents Isoflurane-induced Preconditioning against Myocardial Infarction , 2002, Anesthesiology.

[44]  R. Giorgino,et al.  Effects of streptozocin diabetes and diabetes treatment by islet transplantation on in vivo insulin signaling in rat heart. , 2001, Diabetes.

[45]  P. Pagel,et al.  Diabetes and hyperglycemia impair activation of mitochondrial K(ATP) channels. , 2001, American journal of physiology. Heart and circulatory physiology.

[46]  K. Bidasee,et al.  The effect of diabetes on expression of β1-, β2-, and β3-Adrenoreceptors in rat hearts , 2001 .

[47]  A. Ziegelhöffer,et al.  Acute diabetes modulates response to ischemia in isolated rat heart , 2000, Molecular and Cellular Biochemistry.

[48]  M. Singh,et al.  Possible mechanism of cardioprotective effect of ischaemic preconditioning in isolated rat heart. , 2000, Pharmacological research.

[49]  P. Pagel,et al.  Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. , 2000, American journal of physiology. Heart and circulatory physiology.

[50]  J. Russell,et al.  Postischemic cardiac performance in the insulin-resistant JCR:LA-cp rat. , 1997, The American journal of physiology.

[51]  Alan D. Lopez,et al.  Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study , 1997, The Lancet.

[52]  D. Paulson The diabetic heart is more sensitive to ischemic injury. , 1997, Cardiovascular research.

[53]  Á. Tósaki,et al.  The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts. , 1996, Cardiovascular research.

[54]  J. Downey,et al.  Streptozotocin-induced non-insulin-dependent diabetes protects the heart from infarction. , 1993, Circulation.

[55]  J. McNeill,et al.  Cardiac autonomic receptors: effect of long-term experimental diabetes. , 1984, The Journal of pharmacology and experimental therapeutics.

[56]  K. Shimamoto,et al.  ER stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-GSK-3 β -mediated suppression of mitochondrial permeability transition. , 2009 .

[57]  R. Liao,et al.  Delayed erythropoietin therapy reduces post-MI cardiac remodeling only at a dose that mobilizes endothelial progenitor cells. , 2007, American journal of physiology. Heart and circulatory physiology.

[58]  E. Olson,et al.  Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. , 2004, The Journal of clinical investigation.

[59]  L. Becker Myocardial Reperfusion Injury , 2004, Journal of Thrombosis and Thrombolysis.

[60]  F. Porteu,et al.  Activation of the Mitogen-activated Protein Kinases Erk1/2 by Erythropoietin Receptor via a Gi Protein βγ-Subunit-initiated Pathway* , 2003, The Journal of Biological Chemistry.

[61]  K. Bidasee,et al.  The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. , 2001, Diabetes.