Context Aware Calculation and Deduction

We address some aspects of a system architecture for mathematical assistants that integrates calculations and deductions by common infrastructure within the Isabelle theorem proving environment. Here calculations may refer to arbitrary extra-logical mechanisms, operating on the syntactic structure of logical statements. Deductions are devoid of any computational content, but driven by procedures external to the logic, following to the traditional "LCF system approach". The latter is extended towards explicit dependency on abstract theory contexts, with separate mechanisms to interpret both logical and extra-logical content uniformly. Thus we are able to implement proof methods that operate on abstract theories and a range of particular theory interpretations. Our approach is demonstrated in Isabelle/HOL by a proof-procedure for generic ring equalities via Grobner Bases.

[1]  Markus Wenzel,et al.  Constructive Type Classes in Isabelle , 2006, TYPES.

[2]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[3]  Maribel Fernández,et al.  Curry-Style Types for Nominal Terms , 2006, TYPES.

[4]  Florian Kammüller,et al.  Locales - A Sectioning Concept for Isabelle , 1999, TPHOLs.

[5]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[6]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[7]  Massimo De Gregorio,et al.  Brain, Vision, and Artificial Intelligence, First International Symposium, BVAI 2005, Naples, Italy, October 19-21, 2005, Proceedings , 2005, BVAI.

[8]  Markus Wenzel,et al.  Isabelle, Isar - a versatile environment for human readable formal proof documents , 2002 .

[9]  Clemens Ballarin Locales and Locale Expressions in Isabelle/Isar , 2003, TYPES.

[10]  Clemens Ballarin,et al.  Interpretation of Locales in Isabelle: Theories and Proof Contexts , 2006, MKM.

[11]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[12]  David Delahaye,et al.  Dealing with algebraic expressions over a field in Coq using Maple , 2005, J. Symb. Comput..

[13]  David Delahaye,et al.  Quantifier Elimination over Algebraically Closed Fields in a Proof Assistant using a Computer Algebra System , 2005, Calculemus.

[14]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[15]  Tobias Nipkow,et al.  Verifying and Reflecting Quantifier Elimination for Presburger Arithmetic , 2005, LPAR.

[16]  Hugo Herbelin,et al.  The Coq proof assistant : reference manual, version 6.1 , 1997 .

[17]  John Harrison,et al.  A Skeptic's Approach to Combining HOL and Maple , 1998, Journal of Automated Reasoning.

[18]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.

[19]  William M. Farmer,et al.  IMPS: An interactive mathematical proof system , 1990, Journal of Automated Reasoning.

[20]  Benjamin Grégoire,et al.  Proving Equalities in a Commutative Ring Done Right in Coq , 2005, TPHOLs.

[21]  Markus Wenzel,et al.  Type Classes and Overloading in Higher-Order Logic , 1997, TPHOLs.

[22]  Amine Chaieb,et al.  Verifying Mixed Real-Integer Quantifier Elimination , 2006, IJCAR.

[23]  David Aspinall,et al.  Formalising Java's Data Race Free Guarantee , 2007, TPHOLs.

[24]  Lawrence C. Paulson Organizing Numerical Theories Using Axiomatic Type Classes , 2004, Journal of Automated Reasoning.